Microfluidics Era in Chemistry Field: A Review

  • Yehezkiel Steven Kurniawan Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Indonesia https://orcid.org/0000-0002-4547-239X
  • Arif Cahyo Imawan Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan
  • Sathuluri Ramachandra Rao Department of Reproductive Biomedicine, The National Institute of Health and Family Welfare, India https://orcid.org/0000-0002-4135-4054
  • Keisuke Ohto Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Japan https://orcid.org/0000-0002-5284-5019
  • Wataru Iwasaki Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Japan https://orcid.org/0000-0001-8336-0172
  • Masaya Miyazaki Graduate School of Engineering, Hokkaido University, Japan
  • Jumina Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia https://orcid.org/0000-0003-2604-7838
Keywords: Microfluidic, Application, Chemistry, Lab-on-chip, Organ-on-chip

Abstract

By miniaturizing the reactor dimension, microfluidic devices are attracting world attention and starting the microfluidic era, especially in the chemistry field because they offer great advantages such as rapid processes, small amount of the required reagents, low risk, ease and accurate control, portable and possibility of online monitoring. Because of that, microfluidic devices have been massively investigated and applied for the real application of human life. This review summarizes the up-to-date microfluidic research works including continuous-flow, droplet-based, open-system, paper-based and digital microfluidic devices. The brief fabrication technique of those microfluidic devices, as well as their potential application for particles separation, solvent extraction, nanoparticle fabrication, qualitative and quantitative analysis, environmental monitoring, drug delivery, biochemical assay and so on, are discussed. Recent perspectives of the microfluidics as a lab-on-chip or micro total analysis system device and organ-on-chip are also introduced.

Downloads

Download data is not yet available.

References

G.M. Whitesides, The Origins and the Future of Microfluidics, Nature, 2006, 442, 368-373, DOI: 10.1038/nature05058.

G.W. Hodgson and M.E. Charles, The Pipeline Flow of Capsules: Part 1: The Concept of Capsule Pipelining, Can. J. Chem. Eng., 1963, 41, 43-45, DOI: 10.1002/cjce.5450410202.

J.R. Burns and C. Ramshaw, The Intensification of Rapid Reactions in Multiphase Systems using Slug Flow in Capillaries, Lab Chip, 2001, 1, 10-15, DOI: 10.1039/B102818A.

J. Zhang, S. Yan, D. Yuan, G. Alici, N.T. Nguyen, M.E. Warkiani and W. Li, Fundamentals and Applications of Inertial Microfluidics: A Review, Lab Chip, 2016, 16, 10-34, DOI: 10.1039/C5LC01159K.

R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Revised 2nd edition, John Wiley & Sons, Inc., Singapore, 2007.

M.N. Kashid, A. Renken and L. Kiwi-Minsker, CFD Modelling of Liquid-Liquid Multiphase Microstructured Reactor: Slug Flow Generation, Chem. Eng. Res. Des., 2010, 88, 362-368, DOI: 10.1016/j.cherd.2009.11.017.

M. Mastiani, B. Mosavati and M. Kim, Numerical Simulation of High Inertial Liquid-in-Gas Droplet in a T-junction Microchannel, RSC Adv., 2017, 7, 48512-48525, DOI: 10.1039/C7RA09710G.

K.F. Jensen, Flow Chemistry - Microreaction Technology Comes of Age, AIChE J., 2017, 63, 858-869, DOI: 10.1002/aic.15642.

M.N. Kashid, Y.M. Harshe and D.W. Agar, Liquid-Liquid Slug Flow in a Capillary: An Alternative to Suspended Drop or Film Contactors, Ind. Eng. Chem. Res., 2007, 46, 8420-8430, DOI: 10.1021/ie070077x.

B.K. Gale, A.R. Jafek, C.J. Lambert, B.L. Goenner, H. Moghimifam, U.C. Nze and S.K. Kamarapu, A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects, Inventions, 2018, 3, 60, DOI: 10.3390/inventions3030060.

M.N. Kashid, A. Gupta, A. Renken and L. Kiwi-Minsker, Numbering-up and Mass Transfer Studies of Liquid-Liquid Two-Phase Microsturctured Reactors, Chem. Eng. J., 2010, 158, 233-240, DOI: 10.1016/j.cej.2010.01.020.

K. Wang and G. Luo, Microflow Extraction: A Review of Recent Development, Chem. Eng. Sci., 2017, 169, 18-33, DOI: 10.1016/j.ces.2016.10.025.

K.S. Elvira, X.C. Solvas, R.C.R. Wootton and A.J. deMello, The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis, Nature Chem., 2013, 5, 905-915, DOI: 10.1038/nchem.1753.

S. Kawata, H.B Sun, T. Tanaka and K. Takada, Finer Features for Functional Microdevices, Nature, 2001, 412, 697-698, DOI: 10.1038/35089130.

N. Pamme, Continuous Flow Separations in Microfluidic Devices, Lab Chip, 2007, 7, 1644-1659, DOI: 10.1039/B712784G.

R.R. Sathuluri, Y.S. Kurniawan, J.Y. Kim, M. Maeki, W. Iwasaki, S. Morisada, H. Kawakita, M. Miyazaki and K. Ohto, Droplet-based Microreactor System for Stepwise Recovery of Precious Metal Ions from Real Metal Waste with Calix[4]Arene Derivatives, Sep. Sci. Technol., 2018, 53, 1261-1272, DOI: 10.1080/01496395.2017.1366518.

D. Huh, J.H. Bahng, Y.B. Ling, H.H. Wei, O.D. Kripfgans, J.B. Fowlkes, J.B. Grotberg and S. Takayama, Gravity-driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification, Anal. Chem., 2007, 79, 1369-1376, DOI: 10.1021/ac061542n.

D. Sugiyama, Y. Teshima, K. Yamanaka, M.P. Briones-Nagata, M. Maeki, K. Yamashita, M. Takahashi and M. Miyazaki, Simple Density-Based Particle Separation in a Microfluidic Chip, Anal. Methods, 2014, 6, 308-311, DOI: 10.1039/c3ay40971f.

W. Iwasaki, K. Yamanaka, D. Sugiyama, Y. Teshima, M.P. Briones-Nagata, M. Maeki, K. Yamashita, M. Takahashi and M. Miyazaki, Simple Separation of Good Quality Bovine Oocytes using a Microfluidic Device, Sci. Rep., 2018, 8, 14273, DOI: 10.1038/s41598-018-32687-6.

M. Yamada, M. Nakashima and M. Seki, Pinched Flow Fractination: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel, Anal. Chem., 2004, 76, 5465-5471, DOI: 10.1021/ac049863r.

Y. Sai, M. Yamada, M. Yasuda and M. Seki, Continuous Separation of Particles using a Microfluidic Device Equipped with Flow Rate Control Valves, J. Chromatogr. A, 2006, 1127, 214-220, DOI: 10.1016/j.chroma.2006.05.020.

R.D. Jaggi, R. Sandoz and C.S. Effenhauser, Microfluidic Depletion of Red Blood Cells From Whole Blood in High-Aspect-Ratio Microchannels, Microfluid. Nanofluid., 2007, 3, 47-53, DOI: 10.1007/s10404-006-0104-9.

L.R. Huang, P. Silberzan, J.O. Tegenfeldt, E.C. Cox, J.C. Sturm, R.H. Austin and H. Craighead, Role of Molecular Size in Ratchet Fractination, Phys. Rev. Lett., 2002, 89, 178301, DOI: 10.1103/PhysRevLett.89.178301.

K. Ohto, J.Y. Kim, S. Morisada, M. Maeki, K. Yamashita and M. Miyazaki, Microreactor Extraction System with Macrocyclic Host Compounds for Rare Earth Metal Recovery, Int. J. Soc. Mater. Eng. Resour., 2014, 20, 92-96.

L. Shang, Y. Cheng and Y. Zhao, Emerging Droplet Microfluidics, Chem. Rev., 2017, 117, 7964-8040, DOI: 10.1021/acs.chemrev.6b00848.

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel and A.J. deMello, Microdroplets: A Sea of Applications? Lab Chip, 2008, 8, 1244-1254, DOI: 10.1039/b806405a.

K.I. Sotowa, Fluid Behavior And Mass Transport Characteristics of Gas-Liquid and Liquid-Liquid Flows in Microchannels, J. Chem. Eng. Jpn., 2014, 47, 213-224, DOI: 10.1252/jcej.13we141.

T.S. Kaminski, P. Garstecki, Controlled Droplet Microfluidic Systems for Multistep Chemical and Biological Assays, Chem. Soc. Rev., 2017, 46, 6210-6226, DOI: 10.1039/C5CS00717H.

Y. Zhu, Q. Fang, Analytical Detection for Droplet Microfluidics – A Review, Anal. Chim. Acta, 2013, 787, 24-35, DOI: 10.1016/j.aca.2013.04.064.

W.L. Chou, P.Y. Lee, C.L. Yang, W.Y. Huang and Y.S. Lin, Recent Advances in Applications of Droplet Microfluidics, Micromachines, 2015, 6, 1249-1271, DOI: 10.3390/mi6091249.

W. Zhou, J. Le, Y. Chen, Y. Cai, Z. Hong and Y. Chai, Recent Advances in Microfluidic Devices for Bacteria and Fungus Research, TrAC Trend. Anal. Chem., 2019, 112, 175-195, DOI: 10.1016/j.trac.2018.12.024.

P.F. Jahromi, J. Karimi-Sabet and Y. Amini, Ion-pair Extraction-Reaction of Calcium using Y-Shaped Microfluidic Junctions: An Optimized Separation Approach, Chem. Eng. J., 2018, 334, 2603-2615, DOI: 10.1016/j.cej.2017.11.129.

Y.S. Kurniawan, R.R. Sathuluri, W. Iwasaki, S. Morisada, H. Kawakita, K. Ohto, M. Miyazaki and Jumina, Microfluidic Reactor for Pb(II) Ion Extraction and Removal with Amide Derivative of Calix[4]Arene Supported by Spectroscopic Studies, Microchem. J., 2018, 142, 377-384, DOI: 10.1016/j.microc.2018.07.001.

Y.S. Kurniawan, M. Ryu, R.R. Sathuluri, W. Iwasaki, S. Morisada, H. Kawakita, K. Ohto, M. Maeki, M. Miyazaki and Jumina, Separation of Pb(II) Ion with Tetraacetic Acid Derivative of Calix[4]arene by using Droplet-based Microreactor System, Indones. J. Chem., 2019, DOI: 10.22146/ijc.34387.

Y.S. Kurniawan, R.R. Sathuluri, K. Ohto, W. Iwasaki, H. Kawakita, S. Morisada, M. Miyazaki and Jumina, A Rapid and Efficient Lithium-Ion Recovery from Seawater with Tripropyl-Monoacetic Acid Calix[4]Arene Derivative Employing Droplet-Based Microreactor System, Sep. Purif. Technol., 2019, 211, 925-934, DOI: 10.1016/j.seppur.2018.10.049.

Q. Wang, D. Zhang, X. Yang, H. Xu, A.Q. Shen and Y. Yang, Atom-economical in situ Synthesis of BaSO4 as Imaging Contrast Agents within Poly(N-Isopropylacrylamide Microgels using One-Step Droplet Microfluidics, Green Chem., 2013, 15, 2222-2229, DOI: 10.1039/C3GC40728D.

S. Abalde-Cela, P. Taladriz-Blanco, M.G. De Oliveira and C. Abell, Droplet Microfluidics for the Highly Controlled Synthesis of Branched Gold Nanoparticles, Sci. Rep., 2018, 8, DOI: 10.1038/s41598- 018-20754-x.

Z. Meng, X. Zhang and J. Qin, A High Efficiency Microfluidic-Based Photocatalytic Microreactor using Electrospun Nanofibrous TiO2 as a Photocatalyst, Nanoscale, 2013, 5, 4687-4690, DOI: 10.1039/c3nr00775h.

D. Witters, K. Knex, F. Ceyssens, R. Puers and J. Lammertyn, Digital Microfluidics-Enabled Single-Molecule Detection by Printing and Sealing Single Magnetic Beads in Femtoliter Droplets, Lab Chip, 2013, 13, 2047-2054, DOI: 10.1039/c3lc50119a.

Y. Piao, D.J. Han, M.R. Azad, M. Park and T.S. Seo, Enzyme Incorporated Microfluidic Device for in situ Glucose Detection in Water-in-Air Microdroplets, Biosens. Bioelectron., 2015, 65, 220-225, DOI: 10.1016/j.bios.2014.10.032.

J. Pessi, H.A. Santos, I. Miroshnyk, J. Yliruusi, D.A. Weitz and S. Mirza, Microfluidics-Assisted Engineering of Polymeric Microcapsules with High Encapsulation Efficiency for Protein Drug Delivery, Int. J. Pharm., 2014, 472, 82-87, DOI: 10.1016/j.ijpharm.2014.06.012.

P. Xue, Y. Wu, N.V. Menon and Y. Kang, Microfluidic Synthesis of Monodisperse Pegda Microbeads for Sustained Release of 5-Fluorouracil, Microfluid. Nanofluid., 2014, 18, 333-342, DOI: 10.1007/s10404-014-1436-5.

C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umvilighozo, E. Karita, L. Mwambarangwe, S.L. Braunstein, J. van de Wijgert, R. Sahabo, J.E. Justman, W. El-Sadr and S.K. Sia SK, Microfluidics-Based Diagnostics Of Infectious Diseases In The Developing World, Nat. Med., 2011, 17, 1015-1019, DOI: 10.1038/nm.2408.

Y.H.V. Ma, K. Middleton, L. You and Y. Sun, A Review of Microfluidic Approaches for Investigating Cancer Extravasation during Metastasis, Mycrosys. Nanoeng., 2018, 4, DOI: 10.1038/micronano.2017.104.

N. Moore, D. Doty, M. Zielstorff, I. Kariv, L.Y. Moly, A. Gimbel, J.R. Chevillet, N. Lowry, J. Santos, V. Mott, L. Kratchman, T. Lau, G. Addona, H. Chen and J.T. Borenstein, A Multiplexed Microfluidic System For Evaluation Of Dynamics Of Immune-Tumor Interactions, Lab Chip, 2018, 18, 1844-1858, DOI: 10.1039/c8lc00256h.

M.E. Warkiani, A.K. Tay, B.L. Khoo, X. Xiaofeng, J. Han, C.T. Lim, Malaria Detection using Inertial Microfluidics, Lab Chip, 2015, 15: 1101-1109, DOI: 10.1039/c4lc01058b.

W. Jing, X. Jiang, X. Zhao, S. Liu, X. Cheng and G. Sui G, Microfluidic Platform For Direct Capture And Analysis Of Airborne Mycobacterium Tuberculosis, Anal. Chem., 2014, 86, 5815-5821, DOI: 10.1021/ac500578h.

G.V. Kaigala, R.D. Lovchik and E. Delamarche, Microfluidics in the “Open Space” for Performing Localized Chemistry on Biological Interfaces, Angew. Chem. Int. Ed., 2012, 51, 11224-11240, DOI: 10.1002/anie.201201798.

D. Yang, M. Krasowska, C. Priest, M.N. Popescu and J. Ralston, Dynamics of Capillary-Driven Flow in Open Microchannels, J. Phys. Chem. C, 2011, 115, 18761-18769, DOI: 10.1021/jp2065826.

S. Kachel, Y. Zhou, P. Scharfer, C. Vrancic, W. Petrich and W. Schabel, Evaporation from Open Microchannel Grooves, Lab Chip, 2014, 14, 771-778, DOI: 10.1039/c3lc50892g.

D.M. Cate, J.A. Adkins, J. Mettakoonpitak and C.S. Henry, Recent Developments in Paper-Based Microfluidic Devices, Anal. Chem., 2015, 87, 19-41, DOI: 10.1021/ac503968p.

A.W. Martinez, S.T. Phiips, M.J. Butte and G.M. Whitesides, Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays, Angew. Chem. Int. Ed., 2007, 46, 1318-1320, DOI: 10.1002/anie.200603817.

J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Advances in Paper-Based Point-of-Care Diagnostics, Biosens. Bioelectron., 2014, 54, 585-597, DOI: 10.1016/j.bios.2013.10.075.

Y. Xia, J. Si and Z. Li, Fabrication Techniques For Microfluidic Paper-Based Analytical Devices and Their Applications for Biological Testing: A Review, Biosens. Bioelectron., 2016, 77, 775-789, DOI: 10.1016/j.bios.2015.10.032.

T. Akyazi, L. Basabe-Desmonts and F. Benito-Lopez, Review on Microfluidic Paper-Based Analytical Devices Towards Commercialisation, Anal. Chim. Acta, 2018, 1001, 1-17, DOI: 10.1016/j.aca.2017.11.010.

L. OuYang, C. Wang, F. Du, T. Zheng and H. Liang, Electrochromatographic Separations of Multi-Component Metal Complexes on a Microfluidic Paper-Based Device with a Simplified Photolitography, RSC Adv., 2014, 4, 1093-1101, DOI: 10.1039/C3RA43625J.

K. Yamada, T.G. Henares, K. Suzuki and D. Citterio, Paper-Based Inkjet-Printed Microfluidic Analytical Devices, Angew. Chem. Int. Ed., 2015, 54, 2-19, DOI: 10.1002/anie.201411508.

S. Lee, V. Oncescu, M. Mancuso, S. Mehta and D. Erickson, A Smartphone Platform for the Quantification of Vitamin D Levels, Lab Chip, 2014, 14, 1437-1442, DOI: 10.1039/C3LC51375K.

V. Oncescu, D. O’Dell and D. Erickson, Smartphone Based Health Accessory for Colorimetric Detection of Biomarkers in Sweat and Saliva, Lab Chip, 2013, 13, 3232-3238, DOI: 10.1039/C3LC50431J.

A.W. Martinez, S.T. Philips, E. Carrilho, S.W. Thomas, H. Sindi and G.M. Whitesides, Simple Telmedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis, Anal. Chem., 2008, 80, 3699-3707, DOI: 10.1021/ac800112r.

M.C. Liu, H.C. Shih, J.G. Wu, T.W. Weng, C.Y. Wu, J.C. Lu and Y.C. Tung, Electrofluidic Pressure Sensor Embedded Microfluidic Device: A Study of Endothelial Cells under Hydrostatic Pressure and Shear Stress Combinations, Lab Chip, 2013, 13, 1743, DOI:10.1039/c3lc41414k.

F. Liu, S. Ge, J. Yu, M. Yan and X. Song, Electrochemical Device Based on a Pt Nanosphere-Paper Working Electrode for in situ and Real-Time Determination of the Flux of H2O2 Releasing from SK-BR-3 Cancer Cells, Chem. Commun., 2014, 50, 10315-10318, DOI: 10.1039/C4CC04199B.

Y. Zhang, C. Zhou, J. Nie, S. Le, Q. Qin, F. Liu, Y. Li and J. Li, Equipment-Free Quantitative Measurement for Microfluidic Paper-Based Analytical Devices Fabricated Using the Principles of Movable-Type Printing, Anal. Chem., 2014, 86, 2005-2012, DOI: 10.1021/ac403026c.

D.M. Cate, W. Dungchai, J.C. Cunningham, J. Volckens and C.S. Henry, Simple, Distance-Based Measurement For Paper Analytical Devices, Lab Chip, 2013, 13, 2397-2404, DOI: 10.1039/C3LC50072A.

W.J. Zhu, D.Q. Feng, M. Chen, Z.D. Chen, R. Zhu, H.L. Fang and W. Wang, Bienzyme Colorimetric Detection of Glucose with Self-Calibration Based on Tree-Shaped Paper Strip, Sens. Actuators, B: Chem., 2014, 190, 414-418, DOI: 10.1016/j.snb.2013.09.007.

D. Sechi, B. Greer, J. Johnson and N. Hashemi, Three-Dimensional Paper-Based Microfluidic Device for Assays of Protein and Glucose in Urine, Anal. Chem., 2013, 85, 10733-10737, DOI: 10.1021/ac4014868.

G. Demirel and E. Babur, Vapor-Phase Deposition of Polymers as a Simple and Versatile Technique to Generate Paper-Based Microfluidic Platforms for Bioassay Applications, Analyst, 2014, 139, 2326-2331, DOI: 10.1039/C4AN00022F.

C. Ma, W. Li, Q. Kong, H. Yang, Z. Bian, X. Song, J. Yu and M. Yan, 3D Origami Electrochemical Immunodevice for Sensitive Point-of-Care Testing Based on Dual-Signal Amplification Strategy, Biosens. Bioelectron., 2014, 63, 7-13, DOI: 10.1016/j.bios.2014.07.014.

L. Li, J. Xu, X. Zheng, C. Ma, X. Song, S. Ge, J. Yu and M. Yan, Growth of Gold-Manganese Oxide Nanostructures on A 3D Origami Device for Glucose-Oxidase Label Based Electrochemical Immunosensor, Biosens. Bioelectron., 2014, 61, 76-82, DOI: 10.1016/j.bios.2014.05.012.

M. Su, L. Ge, Q. Kong, X. Zheng, S. Ge, N. Li, J. Yu and M. Yan, Cyto-sensing in Electrochemical Lab-on-Paper Cyto-Device for in-situ Evaluation of Multi-Glycan Expressions on Cancer Cells, Biosens. Bioelectron., 2015, 63, 232-239, DOI: 10.1016/j.bios.2014.07.046.

F. Zhou, M.O. Noor and U.J. Krull, Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors, Anal. Chem., 2014, 86, 2719-2726, DOI: 10.1021/ac404129t.

F. Deiss, M.E. Funes-Huacca, J. Bal, K.F. Tjhung and R. Derda, Antimicrobial Susceptibility Assays in Paper-Based Portable Culture Devices, Lab Chip, 2014, 14, 167-171, DOI: 10.1039/C3LC50887K.

S. Ma, Y. Tang, J. Liu and J. Wu, Visible Paper Chip Immunoassay for Rapid Determination of Bacteria in Water Distribution System, Talanta, 2014, 120, 135-140, DOI: 10.1016/j.talanta.2013.12.007.

A.R. Metcalf, S. Narayan and C.S. Dutcher, A Review of Microfluidic Concepts and Applications for Atmospheric Aerosol Science, Aerosol Sci. Technol., 2018, 52, 310-329, DOI: 10.1080/02786826.2017.1408952.

M. Ines, G.S. Almeida, B.M. Jayawardane, S.D. Kolev and I.D. McKelvie, Developments of Microfluidic Paper-Based Analytical Devices (μPADs) for Water Analysis: A Review, Talanta, 2018, 177, 176-190, DOI: 10.1016/j.talanta.2017.08.072.

G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang and C.F. Chen, Detection of Mercury(II) Ions using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices, Anal. Chem., 2014, 86, 6843-6849, DOI: 10.1021/ac5008688.

Y. Zhang, C. Zhou, J. Nie, S. Le, Q. Qin, F. Liu, Y. Li and J. Li, Equipment-Free Quantitative Measurement for Microfluidic Paper-Based Analytical Devices Fabricated Using the Principles of Movable-Type Printing, Anal. Chem., 2014, 86, 2005-2012, DOI: 10.1021/ac403026c.

S.M.Z. Hossain, J.D. Brennan, β-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals, Anal. Chem., 2011, 83, 8772-8778, DOI: 10.1021/ac202290d.

B.M. Jayawardane, L. Coo, W.R. Cattrall and D.S. Kolev, The Use of a Polymer Inclusion Membrane in a Paper-Based Sensor for the Selective Determination of Cu(II), Anal. Chim. Acta, 2013, 803, 106-112, DOI: 10.1016/j.aca.2013.07.029.

G. Sun, P. Wang, S. Ge, L. Ge, J. Yu and M. Yan, Photoelectrochemical Sensor for Pentachlorophenol on Microfluidic Paper-Based Analytical Device Based on the Molecular Imprinting Technique, Biosens. Bioelectron., 2014, 56, 97-103, DOI: 10.1016/j.bios.2014.01.001.

S.M.Z. Hossain, R.E. Luckham, M.J. McFadden, J.D. Brennan, Reagentless Bidirectional Lateral Flow Bioactive Paper Sensors for Detection of Pesticides in Beverage and Food Samples, Anal. Chem., 2009, 81, 9055-9064, DOI: 10.1021/ac901714h.

J. Wang, L. Yang, B. Liu, H. Jiang, R. Liu, J. Yang, G. Han, Q. Mei and Z. Zhang, Inkjet-Printed Silver Nanoparticle Paper Detects Airborne Species from Crystalline Explosives and Their Ultratrace Residues in Open Environment, Anal. Chem., 2014, 86, 3338-3345, DOI: 10.1021/ac403409q.

A. Pesenti, R.V. Taudte, B. McCord, P. Doble, C. Roux and L. Blanes, Coupling Paper-Based Microfluidics and Lab on a Chip Technologies for Confirmatory Analysis of Trintiro Aromatic Explosives, Anal. Chem., 2014, 86, 4707-4714, DOI: 10.1021/ac403062y.

B.M. Jayawardane, S. Wei, I.D. McKelvie and S.D. Kolev, Microfluidic Paper-Based Analytical Device for the Determination of Nitrite and Nitrate, Anal. Chem., 2014, 86, 7274-7279, DOI: 10.1021/ac5013249.

M.R. Hossan, D. Dutta, N. Islam and P. Dutta, Review: Electric Field Driven Pumping in Microfluidic Device, Electrophoresis, 2018, 39, 702-731, DOI: 10.1002/elps.201700375.

Y.Y. Lin, E.R.F. Welch, R.B. Fair, Low Voltage Picoliter Droplet Manipulation Utilizing Electrowetting-on-Dielectric Platforms, Sens. Actuators B: Chem., 2012, 173, 338-345, DOI: 10.1016/j.snb.2012.07.022.

S.L.S. Freire, Perspectives on Digital Microfluidics, Sens. Actuators, A: Phys., 2016, 250, 15-28, DOI: 10.1016/j.sna.2016.08.007.

H. Yang, V.N. Luk, M. Abelgawad, I. Barbulovic-Nad and A.R. Wheeler, A World-to-Chip Interface for Digital Microfluidics, Anal. Chem., 2009, 81, 1061-1067, DOI: 10.1021/ac802154h.

H. Moon, S.K. Cho, R.L. Garrell and C.J. Kim, Low Voltage Electrowetting-on-Dielectric, J. Appl. Phys., 2002, 92, 4080-4087, DOI: 10.1063/1.1504171.

Y.Y. Lin, R.D. Evans, E.R.F. Welch, B.N. Hsu, A.C. Madison, R.B. Fair, Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators, Sens. Actuators B: Chem., 2010, 150, 465-470, DOI: 10.1016/j.snb.2010.06.059.

K.P. Nichols and J.G.E. Gardeniers, A Digital Microfluidic System for the Investigation of Pre-Steady-State Enzyme Kinetics using Rapid Quenching with MALDI-TOF Mass Spectrometry, Anal. Chem., 2007, 79, 8699-8704, DOI: 10.1021/ac071235x.

S.M. George and H. Moon, Digital Microfluidic Three-Dimensional Cell Culture and Chemical Screening Platform using Alginate Hydrogels, Biomicrofluidics, 2015, 9, 024116, DOI: 10.1063/1.4918377.

K.P. Toralla, J. Pereiro, S. Garrigou, F.D. Federico, C. Proudhon, F.C. Bidard, J.L. Viovy, V. Taly and S. Descroix, Microfluidic Extraction and Digital Quantification of Circulating Cell-Free DNA from Serum, Sens. Actuators, B: Chem., 2019, 286, 533-539, DOI: 10.1016/j.snb.2019.01.159.

G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu and C.J. Kim, EWOD-Driven Droplet Microfluidic Device Integrated with Optoelectronic Tweezers as an Automated Platform for Cellular Isolation and Analysis, Lab Chip, 2009, 9, 1732-1739, DOI: 10.1039/b821508a.

M. Abelgawad, S.L.S. Freire, H. Yang and A.R. Wheeler, All-Terrain Droplet Actuation, Lab Chip, 2008, 8, 672-677, DOI: 10.1039/b801516c.

M.J. Jebrail, H. Yang, J.M. Mudrik, N.M. Lafreniere, C. McRoberts, O.Y. Al-Dirbashi, L. Fisher, P. Chakraborty, A.R. Wheeler, A Digital Microfluidic Method for Dried Blood Spot Analysis, Lab Chip, 2011, 11, 3218-3224, DOI: 10.1039/c1lc20524b.

Y.H. Chang, G.B. Lee, F.C. Huang, Y.Y. Chen and J.L. Lin, Integrated Polymerase Chain Reaction Chips Utilizing Digital Microfluidics, Biomed. Microdevices, 2006, 8, 215-225, DOI: 10.1007/s10544-006-8171-y.

M. Kuhnemund, D. Witters, M. Nilsson and J. Lammertyn, Circle-to-Circle Amplification on a Digital Microfluidic Chip for Amplified Single Molecule Detection, Lab Chip, 2014, 14, 2983-2992, DOI: 10.1039/c4lc00348a.

I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital Microfluidics for Cell-Based Assays, Lab Chip, 2008, 8, 519-526, DOI: 10.1039/b717759c.

F. Zou, Q. Ruan, X. Lin, M. Zhang, Y. Song, L. Zhou, Z. Zhu, S. Lin, W. Wang and C.J. Yang, Rapid, Real-Time Chemiluminescent Detection of DNA Mutation Based on Digital Microfluidics and Pyrosequencing, Biosens. Bioelectron., 2019, 126, 551-557, DOI: 10.1016/j.bios.2018.09.092.

M.J. Jebrail, A.H.C. Ng, V. Rain, R. Hili, A.K. Yudin and A.R. Wheeler, Synchronized Synthesis of Peptide-Based Macrocycles by Digital Microfluidics, Angew. Chem. Int. Ed., 2010, 49, 8625-8629, DOI: 10.1002/anie.201001604.

D. Witters, Digital Microfluidic High-Throughput Printing of Single Metal-Organic Framework Crystals, Adv. Mater., 2012, 10, 1281-1346, DOI: 10.1002/adma.201104922.

G. Comina, A. Suska and D. Filippini, Low Cost Lab-on-a-Chip Prototyping with a Consumer Grade 3D Printer, Lab Chip, 2014, 14, 2978-2982, DOI: 10.1039/C4LC00394B.

N. Covery and N. Gadegaard, 30 Years of Microfluidics, Micro Nano Eng., 2019, 2, 76-91, DOI: 10.1016/j.mne.2019.01.003.

S.N. Bhatia and D.E. Ingber, Microfluidic Organ-on-Chips, Nat. Biotechnol., 2014, 32, 760-772, DOI: 10.1038/nbt.2989.

Y.S. Kurniawan, Micro Total Analysis System Application for Biomedicals: A Mini-Review, Biomed. J. Sci. Tech. Res., 2019, 12, DOI: 10.26717/BJSTR.2019.12.002294.

E.K. Sackmann, A.L. Fulton and D.J. Beebe, The Present and Future Role of Microfluidics in Biomedical Research, Nature, 2014, 507, 181-189, DOI: 10.1038/nature13118.

H. Shi, K. Nie, B. Dong, M. Long, H. Xu and Z. Liu, Recent Progress of Microfluidic Reactors for Biomedical Applications, Chem. Eng. J., 2019, 361, 635-650, DOI: 10.1016/j.cej.2018.12.104.

A. Sarkar, S. Kolitz, D.A. Lauffenburger and J. Han J, Microfluidic Probe for Single-Cell Analysis in Adherent Tissue Culture, Nat. Commun., 2014, 5, 3421, DOI: 10.1038/ncomms4421.

K. Viravaidya and M.L. Shuler, Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies, Biotechnol. Prog., 2004, 20, 590-597, DOI: 10.1021/bp034238d.

D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin and D.E. Ingber. Reconstituting Organ-Level Lung Functions on a Chip, Science, 2010, 328, 1662-1668, DOI: 10.1126/science.1189401.

A. Grosberg, A.P. Nesmith, J.A. Goss, M.D. Brigham, M.L. McCain and K.K. Parker, Muscle on a Chip: in vitro Contractility Assays for Smooth and Striated Muscle, J. Pharmacol. Toxicol. Methods, 2012, 65, 126-135, DOI:10.1016/j.vascn.2012.04.001.

S.H. Park, W.Y. Sim, B.H. Min, S.S. Yang, A. Khademhosseini and D.L. Kaplan, Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation, PLoS One, 2012, 7, DOI 10.1371/journal.pone.0046689.

A. Scott, K. Weir, C. Easton, W. Huynh, W.J. Moody and A. Folch, A Microfluidic Microelectrode Array for Simultaneous Electrophysiology, Chemical Stimulation, and Imaging of Brain Slices, Lab Chip, 2013, 13, 527-535, DOI: 10.1039/C2LC40826K.

A. Agarwal, J.A. Goss, A. Cho, M.L. McCain and K.K. Parker, Microfluidic Heart on a Chip for Higher Throughput Pharmacological Studies, Lab Chip, 2013, 13, 3599, DOI: 10.1039/c3lc50350j.

D. Barata, E. Provaggi, C.V. Blitterswijk and P. Habibovic, Development of a Microfluidic Platform Integrating High-Resolution Microstructured Biomaterials to Study Cell-Material Interactions, Lab Chip, 2017, 17, 4134-4147, DOI:10.1039/c7lc00802c.

R. Villenave, S.Q. Wales, T. Hamkins-Indik, E. Papafragkou, J.C. Weaver, T.C. Ferrante, A. Bahinski, C.A. Elkins, M. Kulka and D.E. Ingber, Human Gut-on-a-Chip Supports Polarized Infection of Coxsackie B1 Virus in vitro, PLoS One, 2017, 12, 1-17, DOI: 10.1371/journal.pone.0169412.

N. Shembekar, H. Hu, D. Eustace and C.A. Merten, Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells, Cell. Rep., 2018, 22, 2094-2106, DOI: 10.1016/j.celrep.2018.01.071.

D. Bennet, Z. Estlack, T. Reid and J. Kim, A Microengineered Human Corneal Epithelium-on-a-Chip for Eye Drops Mass Transport Evaluation, Lab Chip, 2018, 18, 1539-1551, DOI: 10.1039/C8LC00158H.

G. Sriram, M. Alberti, Y. Dancik, B. Wu, R. Wu, Z. Feng, S. Ramasamy, P.L. Bigliardi, M.B. Qi and Z. Wang, Full-Thickness Human Skin-on-Chip with Enhanced Epidermal Morphogenesis and Barrier Function, Mater. Today, 2018, 21, 326-340, DOI: 10.1016/j.mattod.2017.11.002.

J. Lee and S. Kim, Kidney-on-a-Chip: A New Technology for Predicting Drug Efficacy, Interactions, and Drug-Induced Nephrotoxicity, Curr. Drug, Metab., 2018, 19, 577-583, DOI: 10.2174/138920021966618030910184.

Microfluidic field has been thoroughly investigated and applied for chemistry field, especially for separation, purification, qualitative and quantitative analysis, and biomedical field.
Published
2019-08-31
How to Cite
Kurniawan, Y. S., Imawan, A. C., Rao, S. R., Ohto, K., Iwasaki, W., Miyazaki, M., & Jumina. (2019). Microfluidics Era in Chemistry Field: A Review. Journal of the Indonesian Chemical Society, 2(1), 7. https://doi.org/10.34311/jics.2019.02.1.7