Recent Advances in Injectable Hydrogels for Biomedical Applications

Keywords: injectable, hydrogel, biocompatible, minimum surgery, implant


Injectable hydrogels, a class of hydrogel, have received a lot of attention in biomedical applications due to its versatility. It is reported that injectable hydrogel can be applied in various biomedical procedures for example as submucosal fluid cushion, periodontal implant, and cartilage and bone tissue engineering. In addition to its easy delivery (implantation), this class of hydrogel can be tailored to match specific applications. The customization of this hydrogel can be easily executed by changing polymeric backbone of hydrogel, choosing different types of crosslinking or by adding nanoparticles to form hybrid hydrogel systems. Physical properties, compatibility and biodegradability of the resulted materials are important factors for designing injectable hydrogels. In this Recent Research Progress, we highlight the state-of-the-art injectable hydrogels and note the general requirements of an ideal injectable hydrogel for biomedical applications.


Download data is not yet available.


S. Utech, A. R. Boccaccini, A Review of Hydrogel-based Composites for Biomedical Applications: Enhancement of Hydrogel Properties by Addition of Rigid Inorganic Fillers, J. Mater. Sci. 2016, 51, 271–310, DOI:

M. J. Mahoney, K. S. Anseth, Three-dimensional Growth and Function of Neural Tissue in Degradable Polyethylene Glycol Hydrogels, Biomaterials 2006, 27, 2265-2274, DOI:

M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, S. Li, Y. Deng, N. He, Injectable Hydrogels for Cartilage and Bone Tissue Engineering, Bone Res. 2017, 5, 17014, DOI:

K. M. Park, K. D. Park, Injectable Hydrogels: Properties and Applications in Encyclopedia of Polymer Science and Technology, 2017, pp. 1-16, DOI:

Y. P. Singh, J. C. Moses, N. Bhardwaj, B. B. Mandal, Injectable Hydrogels: A New Paradigm for Osteochondral Tissue Engineering, J. Mater. Chem. B 2018, 6, 5499-5529, DOI:

Y. Li, J. Rodrigues, H. Tomás, Injectable and Biodegradable Hydrogels: Gelation, Biodegradation and Biomedical Applications, Chem. Soc. Rev. 2012, 41, 2193-2221, DOI:

S. A. Antoniou, G. A. Antoniou, A. I. Antoniou, F.-A. Granderath, Past, Present, and Future of Minimally Invasive Abdominal Surgery, JSLS 2015, 19, e2015.00052, DOI:

H. S. Ahn, H.-J. Lee, M.-W. Yoo, S.-H. Jeong, T.-S. Han, W.-H. Kim, S.-C. Song, H.-K. Yang, Efficacy of an Injectable Thermosensitive Gel on Postoperative Adhesion in Rat Model, J. Korean Surg. Soc. 2010, 79, 239-245, DOI:

B. H. Lee, S.-C. Song, Synthesis and Characterization of Biodegradable Thermosensitive Poly(organophosphazene) Gels, Macromolecules 2004, 37, 4533-4537, DOI:

S. Hong, J. Carlson, H. Lee, R. Weissleder, Bioorthogonal Radiopaque Hydrogel for Endoscopic Delivery and Universal Tissue Marking, Adv. Healthc. Mater. 2016, 5, 421-426, DOI:

G. Alonci, F. Fiorini, P. Riva, F. Monroy, I. López-Montero, S. Perretta, L. De Cola, Injectable Hybrid Hydrogels, with Cell-Responsive Degradation, for Tumor Resection, ACS Appl. Bio Mater. 2018, 1, 1301-1310, DOI:

R. Jin, L. S. Moreira Teixeira, P. J. Dijkstra, M. Karperien, C. A. van Blitterswijk, Z. Y. Zhong, J. Feijen, Injectable Chitosan-based Hydrogels for Cartilage Tissue Engineering, Biomaterials 2009, 30, 2544-2551, DOI:

J. S. Kwon, S. M. Yoon, D. Y. Kwon, D. Y. Kim, G. Z. Tai, L. M. Jin, B. Song, B. Lee, J. H. Kim, D. K. Han, B. H. Min, M. S. Kim, Injectable in Situ-forming Hydrogel for Cartilage Tissue Engineering, J. Mater. Chem. B 2013, 1, 3314-3321, DOI:

F. Yu, X. Cao, Y. Li, L. Zeng, B. Yuan, X. Chen, An Injectable Hyaluronic Acid/PEG Hydrogel for Cartilage Tissue Engineering Formed by Integrating Enzymatic Crosslinking and Diels–Alder “click chemistry”, Polym. Chem. 2014, 5, 1082-1090, DOI:

Y. Li, J. Cao, S. Han, Y. Liang, T. Zhang, H. Zhao, L. Wang, Y. Sun, ECM Based Injectable Thermo-sensitive Hydrogel on the Recovery of Injured Cartilage Induced by Osteoarthritis, Arti. Cell Nanomed. B 2018, 46, 152-160, DOI:

C.-Z. Wang, R. Eswaramoorthy, T.-H. Lin, C.-H. Chen, Y.-C. Fu, C.-K. Wang, S.-C. Wu, G.-J. Wang, J.-K. Chang, M.-L. Ho, Enhancement of Chondrogenesis of Adipose-derived Stem Cells in HA-PNIPAAm-CL Hydrogel for Cartilage Regeneration in Rabbits, Sci. Rep. 2018, 8, 105265, DOI:

F. Cipriani, M. Krüger, I. G. de Torre, L. Q. Sierra, M. A. Rodrigo, L. Kock, J. C. Rodriguez-Cabello, Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform, Biomacromolecules 2018, 19, 4333-4347, DOI:

L. Li, F. Yu, L. Zheng, R. Wang, W. Yan, Z. Wang, J. Xu, J. Wu, D. Shi, L. Zhu, X. Wang, Q. Jiang, Natural Hydrogels for Cartilage Regeneration: Modification, Preparation and Application, J. Orthop. Trans. 2018, DOI:

C. Celik, V. T. Mogal, J. H. P. Hui, X. J. Loh, W. S. Toh, Injectable Hydrogels for Cartilage Regeneration in Hydrogels: Recent Advances (Eds.: V. K. Thakur, M. K. Thakur), Springer Singapore, Singapore, 2018, pp. 315-337, DOI:

O. Jeznach, D. Kołbuk, P. Sajkiewicz, Injectable Hydrogels and Nanocomposite Hydrogels for Cartilage Regeneration, J. Biomed. Mater. Res. A 2018, 106, 2762-2776, DOI:

M. S. Tonetti, S. Jepsen, L. Jin, J. Otomo-Corgel, Impact of the Global Burden of Periodontal Diseases on Health, Nutrition and Wellbeing of Mankind: A Call for Global Action, J. Clin. Periodontol. 2017, 44, 456-462, DOI:

Q. X. Ji, Q. S. Zhao, J. Deng, R. Lu, A Novel Injectable Chlorhexidine Thermosensitive Hydrogel for Periodontal Application: Preparation, Antibacterial Activity and Toxicity Evaluation, J. Mater. Sci. Mater. Med. 2010, 21, 2435-2442, DOI:

Q. X. Ji, J. Deng, X. M. Xing, C. Q. Yuan, X. B. Yu, Q. C. Xu, J. Yue, Biocompatibility of a Chitosan-based Injectable Thermosensitive Hydrogel and its Effects on Dog Periodontal Tissue Regeneration, Carbohydr. Polym. 2010, 82, 1153-1160, DOI:

Y. Pakzad, F. Ganji, Thermosensitive Hydrogel for Periodontal Application: In vitro Drug Release, Antibacterial Activity and Toxicity Evaluation, J. Biomater. Appl. 2015, 30, 919-929, DOI:

X. Xu, Z. Gu, X. Chen, C. Shi, C. Liu, M. Liu, L. Wang, M. Sun, K. Zhang, Q. Liu, Y. Shen, C. Lin, B. Yang, H. Sun, An Injectable and Thermosensitive Hydrogel: Promoting Periodontal Regeneration by Controlled-release of Aspirin and Erythropoietin, Acta Biomater. 2019, 86, 235-246, DOI:

S. H. Park, J. S. Kwon, B. S. Lee, J. H. Park, B. K. Lee, J.-H. Yun, B. Y. Lee, J. H. Kim, B. H. Min, T. H. Yoo, M. S. Kim, BMP2-modified Injectable Hydrogel for Osteogenic Differentiation of Human Periodontal Ligament Stem Cells, Sci. Rep. 2017, 7, 6603, DOI:

J. S. Shim, D.-s. Park, D.-H. Baek, N. Jha, S. I. Park, H. J. Yun, W. J. Kim, J. J. Ryu, Antimicrobial Activity of NO-releasing Compounds Against Periodontal Pathogens, PLoS One 2018, 13, e0199998, DOI:

H. Liu, J. Liu, C. Qi, Y. Fang, L. Zhang, R. Zhuo, X. Jiang, Thermosensitive Injectable In-situ Forming Carboxymethyl Chitin Hydrogel for Three-dimensional Cell Culture, Acta Biomater. 2016, 35, 228-237, DOI:

H. K. Kim, W. S. Shim, S. E. Kim, K. H. Lee, E. Kang, J. H. Kim, K. Kim, I. C. Kwon, D. S. Lee, Injectable in situ-forming pH/Thermo-sensitive Hydrogel for Bone Tissue Engineering, Tissue Eng. Part A 2009, 15, 923-933, DOI:

E. R. Aurand, J. Wagner, C. Lanning, K. B. Bjugstad, Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord, J. Funct. Biomater. 2012, 3, 839-863, DOI:

B. Á. Szilágyi, Á. Némethy, A. Magyar, I. Szabó, S. Bősze, B. Gyarmati, A. Szilágyi, Amino Acid Based Polymer Hydrogel with Enzymatically Degradable Cross-links, React. Funct. Polym. 2018, 133, 21-28, DOI:

M. R. Singh, S. Patel, D. Singh, Chapter 9 - Natural Polymer-based Hydrogels as Scaffolds for Tissue Engineering in Nanobiomaterials in Soft Tissue Engineering (Ed.: A. M. Grumezescu), William Andrew Publishing, 2016, pp. 231-260, DOI:

W. Tanan, J. Panichpakdee, S. Saengsuwan, Novel Biodegradable Hydrogel Based on Natural Polymers: Synthesis, Characterization, Swelling/Reswelling and Biodegradability, Eur. Polym. J. 2019, 112, 678-687, DOI:

E. L. Hedberg, H. C. Kroese-Deutman, C. K. Shih, R. S. Crowther, D. H. Carney, A. G. Mikos, J. A. Jansen, In vivo Degradation of Porous Poly(propylene fumarate)/Poly(DL-lactic-co-glycolic acid) Composite Scaffolds, Biomaterials 2005, 26, 4616-4623, DOI:

K. J. Lampe, R. M. Namba, T. R. Silverman, K. B. Bjugstad, M. J. Mahoney, Impact of Lactic Acid on Cell Proliferation and Free Radical-induced Cell Death in Monolayer Cultures of Neural Precursor Cells, Biotechnol. Bioeng. 2009, 103, 1214-1223, DOI:

T. Xia, W. Liu, L. Yang, A Review of Gradient Stiffness Hydrogels Used in Tissue Engineering and Regenerative Medicine, J. Biomed. Mater. Res. A 2017, 105, 1799-1812, DOI:

O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H.-p. Lee, E. Lippens, G. N. Duda, D. J. Mooney, Hydrogels with Tunable Stress Relaxation Regulate Stem Cell Fate and Activity, Nat. Mater. 2015, 15, 326, DOI:

Y.-H. Tsou, J. Khoneisser, P.-C. Huang, X. Xu, Hydrogel as a Bioactive Material to Regulate Stem Cell Fate, Bioactive Mater. 2016, 1, 39-55, DOI:

K. L. Ong, S. Lovald, J. Black, Orthopaedic Biomaterials in Research and Practice, CRC Press 2014.

R. Jayakumar, D. Menon, K. Manzoor, S. V. Nair, H. Tamura, Biomedical Applications of Chitin and Chitosan Based Nanomaterials—A Short Review, Carbohydr. Polym. 2010, 82, 227-232, DOI:

N. A. Peppas, J. J. Sahlin, Hydrogels as Mucoadhesive and Bioadhesive Materials: A Review, Biomaterials 1996, 17, 1553-1561, DOI:

H. Park, J. R. Robinson, Mechanisms of Mucoadhesion of Poly(acrylic Acid) Hydrogels, Pharm. Res. 1987, 4, 457-464, DOI:

M. C. Giano, Z. Ibrahim, S. H. Medina, K. A. Sarhane, J. M. Christensen, Y. Yamada, G. Brandacher, J. P. Schneider, Injectable Bioadhesive Hydrogels with Innate Antibacterial Properties, Nat. Commun. 2014, 5, 4095, DOI:

Y. Huang, W. Leobandung, A. Foss, N. A. Peppas, Molecular Aspects of Muco- and Bioadhesion: Tethered Structures and Site-specific Surfaces, J. Control. Release 2000, 65, 63-71, DOI: 10.1016/S0168-3659(99)00233-3.

N. S. Kehr, E. A. Prasetyanto, K. Benson, B. Ergün, A. Galstyan, H.-J. Galla, Periodic Mesoporous Organosilica-Based Nanocomposite Hydrogels as Three-Dimensional Scaffolds, Angew. Chem. Int. Ed. 2013, 52, 1156-1160, DOI:

F. Fiorini, E. A. Prasetyanto, F. Taraballi, L. Pandolfi, F. Monroy, I. López-Montero, E. Tasciotti, L. De Cola, Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis, Small 2016, 12, 4881-4893, DOI:

A. N. Steele, L. M. Stapleton, J. M. Farry, H. J. Lucian, M. J. Paulsen, A. Eskandari, C. E. Hironaka, A. D. Thakore, H. Wang, A. C. Yu, D. Chan, E. A. Appel, Y. J. Woo, A Biocompatible Therapeutic Catheter-Deliverable Hydrogel for In Situ Tissue Engineering, Adv. Healthc. Mater. 2019, 8, 1801147, DOI:

I. K. Ko, S. J. Lee, A. Atala, J. J. Yoo, In situ Tissue Regeneration through Host Stem Cell Recruitment, Exp. Mol. Med. 2013, 45, e57, DOI:

M. Song, H. Jang, J. Lee, J. H. Kim, S. H. Kim, K. Sun, Y. Park, Regeneration of Chronic Myocardial Infarction by Injectable Hydrogels Containing Stem Cell Homing Factor SDF-1 and Angiogenic Peptide Ac-SDKP’, Biomaterials 2014, 35, 2436-2445, DOI:

Hydrogel is one of the best 3D scaffold materials and become a trending research field in the area of regenerative medicine and tissue/bone engineering. In this manuscript, author describes recent development in the area of Injectable Hydrogels. Compared to other reports, this article distinctively focuses on the general requirements to synthesize an ideal injectable hydrogel for biomedical applications.
How to Cite
Adi Prasetyanto, E. (2019). Recent Advances in Injectable Hydrogels for Biomedical Applications. Journal of the Indonesian Chemical Society, 2(1), 1.
Recent Research Progress