On the Renewable Polymers from Agro-industrial Biomass: A Mini Review

  • Roswanira Abdul Wahab Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Malaysia https://orcid.org/0000-0002-9982-6587
  • Jacob Adikwu Gowon Department of Applied Chemistry, Federal University Dutsin-Ma, Nigeria
  • Nursyafiqah Elias Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
Keywords: cellulose, silica, chitin, chitosan, renewable polymer

Abstract

Plant biomass is the most abundant natural resources on earth. However, current strategies for the utilization of agricultural biomass is far from efficient, thus environmental issues related to incompetent management of biomass prevail. Innovative handling of surplus biomass can yield several rewards, which includes renewability and sustainability of the commodity as feedstock for industrial and energy purposes. In fact, an array of different parts of a plant or agro-industrial biomass, for instance, shell, husks, wood, and leaves were successfully converted into advanced carbon materials, for use as absorbent, catalyst enzyme support, electrode, etc. In this review, an extensive literature survey related to areas of renewable sources of biopolymer in both the agricultural and industrial sectors were performed. Information on their industrial value and uses, the fundamentals of their extraction alongside the benefits and major drawbacks of their utilization, are also highlighted. We aim to show that the smart utilization of unwanted agro-industrial biomass encompasses a portion of a bigger scheme that intelligently uses biomass to complement current agricultural advancements that create smart crops and growing them using cleverly designed technology. The best part of this “Waste to Wealth” concept is that every part of the crop is fully utilized. However, a set of clear criteria must be in place to ensure a sustained momentum, so that the green approach of responsible biomass utilization will be fully embraced by nations worldwide.

Downloads

Download data is not yet available.

Author Biographies

Jacob Adikwu Gowon, Department of Applied Chemistry, Federal University Dutsin-Ma, Nigeria

Department of Applied Chemistry, Ph.D candidate

Nursyafiqah Elias, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Malaysia

Department of Chemistry, Ph.D candidate

References

M.F. Awalludin, O. Sulaiman, R. Hashim and W. Nadhari, An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction, Renew. Sust. Energ. Rev., 2015, 50, 1469-1484, DOI: https://doi.org/10.1016/j.rser.2015.05.085.

E. Onoja, S. Chandren, F.I.A. Razak and R.A. Wahab, Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization, J. Biotechnol., 2018, 283, 81-96, DOI: https://doi.org/10.1016/j.jbiotec.2018.07.036.

J. Akhtar and N.A.S. Amin, A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass, Renew. Sust. Energ. Rev., 2011, 15, 1615-1624, DOI: https://doi.org/10.1016/j.rser.2010.11.054.

E. Kwietniewska and J. Tys, Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation, Renew. Sust. Energ. Rev., 2014, 34, 491-500, DOI: https://doi.org/10.1016/j.rser.2014.03.041

E. Onoja, S. Chandren, F.I.A. Razak, N.A. Mahat and R.A. Wahab, Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects, Waste Biomass Valori., 2018, 1-19, DOI: https://doi.org/10.1007/s12649-018-0258-1.

K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia and X. Duan, Preparation of high surface area activated carbon from coconut shells using microwave heating, Bioresour. Technol., 2010, 101, 6163-6169, DOI: https://doi.org/10.1016/j.biortech.2010.03.001.

M. Demir, Z. Kahveci, B. Aksoy, N.K. Palapati, A. Subramanian, H.T. Cullinan, H.M. El-Kaderi, C.T. Harris and R.B. Gupta, Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin, Industr. Eng. Chem. Res., 2015, 54, 10731-10739, DOI: https://doi.org/10.1021/acs.iecr.5b02614.

H.Z. Chen and Z.H. Liu, Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio‐based products, Biotechnol. J., 2015, 10, 866-885, DOI: https://doi.org/10.1002/biot.201400705.

H. Abdul Khalil, C. Kang, A. Khairul, R. Ridzuan and T. Adawi, The effect of different laminations on mechanical and physical properties of hybrid composites, J. Reinf. Plast. Compos., 2009, 28, 1123-1137, DOI: https://doi.org/10.1177/0731684407087755.

H. Abdul Khalil, B. Poh, A. Issam, M. Jawaid and R. Ridzuan, Recycled polypropylene-oil palm biomass: The effect on mechanical and physical properties, J. Reinf. Plast. Compos., 2010, 29, 1117-1130, DOI: https://doi.org/10.1177/0731684409103058.

Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: A review, Bioresour. Technol., 2002, 83, 1-11, DOI: https://doi.org/10.1016/S0960-8524(01)00212-7.

S.T. Tan, H. Hashim, A.H.A. Rashid, J.S. Lim, W.S. Ho and A.B. Jaafar, Economic and spatial planning for sustainable oil palm biomass resources to mitigate transboundary haze issue, Biores. Tech., 2017, 146, 169-178. DOI: https://doi.org/10.1016/j.jbiotec.2018.07.036, DOI: 10.1016/j.energy.2017.07.080.

J. Karl and T. Pröll, Steam gasification of biomass in dual fluidized bed gasifiers: A review, Renew. Sust. Energ. Rev., 2018, 98, 64-78, DOI: https://doi.org/10.1016/j.rser.2018.09.010.

P. Gilbert, S. Alexander, P. Thornley and J. Brammer, Assessing economically viable carbon reductions for the production of ammonia from biomass gasification, J. Cleaner Prod., 2014, 64, 581-589. DOI: https://doi.org/10.1016/j.jclepro.2013.09.011.

U.R. Ezeilo, I.I. Zakaria, F. Huyop and R.A. Wahab, Enzymatic breakdown of lignocellulosic biomass: The role of glycosyl hydrolases and lytic polysaccharide monooxygenases, Biotechnol. Biotechnol. Equip., 2017, 31, 647-662, DOI: https://doi.org/10.1080/13102818.2017.1330124.

Y. Liu and J.Y. Chen, Enzyme immobilization on cellulose matrixes, J. Bioact. Compat. Polym., 2016, 31, 553-567, DOI: https://doi.org/10.1177/0883911516637377.

F.M.A. Manan, N. Attan, Z. Zakaria, A.S.A. Keyon and R.A. Wahab, Enzymatic esterification of eugenol and benzoic acid by a novel chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase: Process optimization and kinetic assessments, Enzyme Microb. Technol., 2018, 108, 42-52, DOI: https://doi.org/10.1016/j.enzmictec.2017.09.004.

N.H. Che Marzuki, N.A. Mahat, F. Huyop, N.A. Buang and R.A. Wahab, Candida rugosa lipase immobilized onto acid-functionalized multi-walled carbon nanotubes for sustainable production of methyl oleate, Appl. Biochem. Biotechnol., 2015, 177, 967-84, DOI: https://doi.org/10.1007/s12010-015-1791-z.

E. Onoja, S. Chandren, F.I.A. Razak and R.A. Wahab, Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study, J. Taiw. Inst. Chem. Eng., 2018, 91, 105-118, DOI: https://doi.org/10.1016/j.jtice.2018.05.049.

F. Abnisa, A. Arami-Niya, W.W. Daud, J. Sahu and I. Noor, Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis, Energy Convers. Manage., 2013, 76, 1073-1082, DOI: https://doi.org/10.1016/j.enconman.2013.08.038.

S.K. Loh, The potential of the Malaysian oil palm biomass as a renewable energy source, Energy Convers. Manage., 2017, 141, 285-298, DOI: https://doi.org/10.1016/j.enconman.2016.08.081.

R. Ilyas, S. Sapuan and M. Ishak, Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata), Carbohydr. Polym., 2018, 181, 1038-1051, DOI: https://doi.org/10.1016/j.carbpol.2017.11.045.

G.D. Saratale and S.E. Oh, Lignocellulosics to ethanol: The future of the chemical and energy industry, Afr. J. Biotechnol., 2012, 11, 1002-1013, DOI: https://doi.org/10.5897/AJB10.897.

S.P. De Souza, I.I. Junior, G.M. Silva, L.S. Miranda, M.F. Santiago, F.L.-Y. Lam, A. Dawood, U.T. Bornscheuer and R.O. De Souza, Cellulose as an efficient matrix for lipase and transaminase immobilization, RSC Adv., 2016, 6, 6665-6671, DOI: https://doi.org/10.1039/C5RA24976G.

N. Lavoine, I. Desloges, A. Dufresne and J. Bras, Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review, Carbohydr. Polym., 2012, 90, 735-764. DOI: https://doi.org/10.1016/j.carbpol.2012.05.026.

P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula and G. Guan, Nanocellulose: Extraction and application, Carbon Resour. Conversion, 2018, 1, 32-43, DOI: https://doi.org/10.1016/j.crcon.2018.05.004.

R. Wahlström, S. Rovio and A. Suurnäkki, Partial enzymatic hydrolysis of microcrystalline cellulose in ionic liquids by Trichoderma reesei endoglucanases, RSC Adv., 2012, 2, 4472-4480. DOI: https://doi.org/10.1039/C2RA01299E.

H. Wang, F. Squina, F. Segato, A. Mort, D. Lee, K. Pappan and R. Prade, High-temperature enzymatic breakdown of cellulose, Appl. Environ. Microbiol., 2011, 77, 5199-5206, DOI: https://doi.org/10.1128/AEM.00199-11.

E.T. Reese, R.G. Siu and H.S. Levinson, The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis, J. Bacteriol., 1950, 59, 485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC385789/pdf/jbacter00620-0053.pdf.

U. Ezeilo, F. Huyop and R. Wahab, Raw oil palm fronds leaves as cost effective substrate for cellulase and xylanase production by Trichoderma asperellum UC1 under solid state fermentation, J. Environ. Manage., 2019, 243, 206-217, DOI: https://doi.org/10.1016/j.jenvman.2019.04.113.

U.R. Ezeilo, R.A. Wahab, L.C. Tin, I.I. Zakaria, F. Huyop and N.A. Mahat, Fungal-Assisted valorization of raw oil palm leaves for production of cellulase and xylanase in solid state fermentation media, Waste Biomass Valori., 2019, 1-17, DOI: https://doi.org/10.1007/s12649-019-00653-6.

X. Xu, M. Lin, Q. Zang and S. Shi, Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification, Bioresour. Technol., 2018, 247, 88-95, DOI: https://doi.org/10.1016/j.biortech.2017.08.192.

A.S.O. Idris, A. Pandey, S. Rao and R.K. Sukumaran, Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover, Bioresour. Technol., 2017, 242, 265-271, DOI: https://doi.org/10.1016/j.biortech.2017.03.092.

N. Elias, S. Chandren, N. Attan, N.A. Mahat, F.I.A. Razak, J. Jamalis and R.A. Wahab, Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate, Carbohydr. Polym., 2017, 176, 281-292, DOI: https://doi.org/10.1016/j.carbpol.2017.08.097.

N. Elias, S. Chandren, F.I.A. Razak, J. Jamalis, N. Widodo and R.A. Wahab, Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass, Int. J. Biol. Macromol., 2018, 114, 306-316, DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.095.

M. Moniruzzaman, T. Ono, S. Yusup, S. Chowdhury, M.A. Bustam and Y. Uemura, Improved biological delignification of wood biomass via Ionic liquids pretreatment: A one step process, J. Energy Technol. Policy, 2013, 3, 144-52, DOI: https://doi.org/10.1016/j.jbiotec.2018.07.036.

P. Satyamurthy, P. Jain, R.H. Balasubramanya and N. Vigneshwaran, Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis, Carbohydr. Polym., 2011, 83, 122-129, DOI: https://doi.org/10.1016/j.carbpol.2010.07.029.

A. de Campos, A.C. Correa, D. Cannella, E. de M Teixeira, J.M. Marconcini, A. Dufresne, L.H. Mattoso, P. Cassland and A.R. Sanadi, Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication, Cellulose, 2013, 20, 1491-1500, DOI: https://doi.org/10.1007/s10570-013-9909-3.

H. Tibolla, F.M. Pelissari and F.C. Menegalli, Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment, LWT-Food Sci. Tech., 2014, 59, 1311-1318, DOI: 10.1016/j.lwt.2014.04.011.

F. Beltramino, M.B. Roncero, T. Vidal, A.L. Torres and C. Valls, Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment, Bioresour. Technol., 2015, 192, 574-581, DOI: https://doi.org/10.1016/j.biortech.2015.06.007.

M. Martelli-Tosi, M.d.S. Torricillas, M.A. Martins, O.B.G.d. Assis and D.R. Tapia-Blácido, Using commercial enzymes to produce cellulose nanofibers from soybean straw, J. Nanomater., 2016, Article ID 8106814, DOI: https://doi.org/10.1155/2016/8106814.

P. Lu and Y.-L. Hsieh, Preparation and properties of cellulose nanocrystals: Rods, spheres, and network, Carbohydr. Polym., 2010, 82, 329-336, DOI: https://doi.org/10.1016/j.carbpol.2010.04.073.

B. Peng, N. Dhar, H. Liu and K. Tam, Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective, Can. J. Chem. Eng., 2011, 89, 1191-1206, DOI: https://doi.org/10.1002/cjce.20554.

S. Maiti, J. Jayaramudu, K. Das, S.M. Reddy, R. Sadiku, S.S. Ray and D. Liu, Preparation and characterization of nano-cellulose with new shape from different precursor, Carbohydr. Polym., 2013, 98, 562-567, DOI: https://doi.org/10.1016/j.carbpol.2013.06.029.

A. Isogai, T. Saito and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, 2011, 3, 71-85, DOI: https://doi.org/10.1039/C0NR00583E.

Y. Chen, C. Liu, P.R. Chang, X. Cao and D.P. Anderson, Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time, Carbohydr. Polym., 2009, 76, 607-615, DOI: https://doi.org/10.1016/j.carbpol.2008.11.030.

J.I. Moran, V.A. Alvarez, V.P. Cyras and A. Vazquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, 2008, 15, 149-159, DOI: https://doi.org/10.1007/s10570-007-9145-9.

X. Cao, Y. Chen, P. Chang, A. Muir and G. Falk, Starch-based nanocomposites reinforced with flax cellulose nanocrystals, Express Polym. Lett., 2008, 2, 502-510. DOI: https://doi.org/10.3144/expresspolymlett.2008.60.

A. Alemdar and M. Sain, Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls, Bioresour. Technol., 2008, 99, 1664-1671, DOI: https://doi.org/10.1016/j.biortech.2007.04.029.

T. Theivasanthi, F.A. Christma, A.J. Toyin, S.C. Gopinath and R. Ravichandran, Synthesis and characterization of cotton fiber-based nanocellulose, Int. J. Biol. Macromol., 2018, 109, 832-836, DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.054.

M. Camacho, Y.R.C. Ureña, M. Lopretti, L.B. Carballo, G. Moreno, B. Alfaro and J.R.V. Baudrit, Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues, J. Renew. Mater., 2017, 5, 271-279, DOI: https://doi.org/10.7569/JRM.2017.634117.

C.F. Castro-Guerrero, M.R. Díaz-Guillén, F. Delgado-Arroyo, A. Rodas-Grapain and S. Godavarthi, Purification of cellulose from rice husk for the synthesis of nanocellulose, 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), IEEE, 2016, pp. 569-572.

F. Hemmati, S.M. Jafari, M. Kashaninejad and M.B. Motlagh, Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues, Int. J. Biol. Macromol., 2018, 120, 1216-1224, DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.012.

S. Bano and Y.S. Negi, Studies on cellulose nanocrystals isolated from groundnut shells, Carbohydr. Polym., 2017, 157, 1041-1049, DOI: https://doi.org/10.1016/j.carbpol.2016.10.069.

Z. Wang, Z. Yao, J. Zhou, M. He, Q. Jiang, S. Li, Y. Ma, M. Liu and S. Luo, Isolation and characterization of cellulose nanocrystals from pueraria root residue, Int. J. Biol. Macromol., 2019, 129, 1081-1089, DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.055.

A.N. Frone, I. Chiulan, D.M. Panaitescu, C.A. Nicolae, M. Ghiurea and A.-M. Galan, Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization, Mater. Lett., 2017, 194, 160-163, DOI: https://doi.org/10.1016/j.matlet.2017.02.051.

J. Marett, A. Aning and E.J. Foster, The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis, Ind. Crops Prod., 2017, 109, 869-874, DOI: https://doi.org/10.1016/j.indcrop.2017.09.039.

K.S. Prado and M.A. Spinacé, Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses, Int. J. Biol. Macromol., 2019, 122, 410-416, DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.187.

T.I. Shaheen and H.E. Emam, Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis, Int. J. Biol. Macromol., 2018, 107, 1599-1606. DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.028.

F. Kallel, F. Bettaieb, R. Khiari, A. García, J. Bras and S.E. Chaabouni, Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues, Ind. Crops Prod., 2016, 87, 287-296, DOI: https://doi.org/10.1016/j.indcrop.2016.04.060.

P.B. Filson and B.E. Dawson-Andoh, Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials, Bioresour. Technol., 2009, 100, 2259-2264, DOI: https://doi.org/10.1016/j.biortech.2008.09.062.

A. Stolle, Technical implications of organic syntheses in Ball mills, Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, 2014, 7, 241.

TAPPI, Summary of International Activities on Cellulosic Nanomaterials, 2015. .http://www.tappinano.org/media/1096/tc6-worldcnm-activities-summary-july-29-2015.pdf.

M. Hervy, S. Evangelisti, P. Lettieri and K.-Y. Lee, Life cycle assessment of nanocellulose-reinforced advanced fibre composites, Compos. Sci. Technol., 2015, 118, 154-162, DOI: https://doi.org/10.1016/j.compscitech.2015.08.024.

K.-Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman and A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Compos. Sci. Technol., 2014, 105, 15-27, DOI: https://doi.org/10.1016/j.compscitech.2014.08.032.

D. Elieh-Ali-Komi and M.R. Hamblin, Chitin and chitosan: Production and application of versatile biomedical nanomaterials, Int. J. Adv. Res., 2016, 4, 411.

M. Rinaudo, Chitin and chitosan: Properties and applications, Prog. Polym. Sci., 2006, 31, 603-632, DOI: https://doi.org/10.1016/j.progpolymsci.2006.06.001.

E. El-Diasty, Z. Nesreen and A. Hoda, Using of chitosan as antifungal agent in Kariesh cheese, New York Sci. J., 2012, 5, 5-10.

B.K. Park and M.-M. Kim, Applications of chitin and its derivatives in biological medicine, Int. J. Mol. Sci., 2010, 11, 5152-5164, DOI: https://doi.org/10.3390/ijms11125152.

G. Lodhi, Y.-S. Kim, J.-W. Hwang, S.-K. Kim, Y.-J. Jeon, J.-Y. Je, C.-B. Ahn, S.-H. Moon, B.-T. Jeon and P.-J. Park, Chitooligosaccharide and its derivatives: Preparation and biological applications, BioMed Res. Int., 2014, Article ID 654913, DOI: https://doi.org/10.1155/2014/654913.

I.A. Hoell, G. Vaaje-Kolstad and V.G. Eijsink, Structure and function of enzymes acting on chitin and chitosan, Biotech. Gen. Eng. Rev., 2010, 27, 331-366, DOI: https://doi.org/10.1080/02648725.2010.10648156.

H. Sashiwa, H. Saimoto, Y. Shigemasa, R. Ogawa and S. Tokura, Lysozyme susceptibility of partially deacetylated chitin, Int. J. Biol. Macromol., 1990, 12, 295-296, DOI: https://doi.org/10.1016/0141-8130(90)90016-4.

K. Azuma, R. Izumi, T. Osaki, S. Ifuku, M. Morimoto, H. Saimoto, S. Minami and Y. Okamoto, Chitin, chitosan, and its derivatives for wound healing: Old and new materials, J. Funct. Biomater., 2015, 6, 104-142, DOI: https://doi.org/10.3390/jfb6010104.

R. Jayakumar, M. Prabaharan, P.S. Kumar, S. Nair and H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol. Adv., 2011, 29, 322-337, DOI: https://doi.org/10.1016/j.biotechadv.2011.01.005.

K. Azuma, S. Ifuku, T. Osaki, Y. Okamoto and S. Minami, Preparation and biomedical applications of chitin and chitosan nanofibers, J. Biomed. Nanotech., 2014, 10, 2891-2920, DOI: https://doi.org/10.1166/jbn.2014.1882.

R. Jayakumar, D. Menon, K. Manzoor, S. Nair and H. Tamura, Biomedical applications of chitin and chitosan based nanomaterials—A short review, Carbohydr. Polym., 2010, 82, 227-232, DOI: https://doi.org/10.1016/j.carbpol.2010.04.074.

S. Hirano, Y. Tanaka, M. Hasegawa, K. Tobetto and A. Nishioka, Effect of sulfated derivatives of chitosan on some blood coagulant factors, Carbohydr. Res., 1985, 137, 205-215. DOI: https://doi.org/10.1016/0008-6215(85)85161-2.

A. Tokoro, N. Takewaki, K. Suzuki, T. Mikami, S. Suzuki and M. Suzuki, Growth-inhibitory effect of hexa-N-acetylchitohexanse and chitohexaose against Meth-A solid tumor, Chem. Pharm. Bull., 1988, 36, 784-790, DOI: https://doi.org/10.1248/cpb.36.784.

S.Y. Lin, H.Y. Chan, F.H. Shen, M.H. Chen, Y.J. Wang and C.K. Yu, Chitosan prevents the development of AOM‐induced aberrant crypt foci in mice and suppressed the proliferation of AGS cells by inhibiting DNA synthesis, J. Cell. Biochem., 2007, 100, 1573-1580, DOI: https://doi.org/10.1002/jcb.21152.

A. Smith, M. Perelman and M. Hinchcliffe, Chitosan: A promising safe and immune-enhancing adjuvant for intranasal vaccines, Human Vaccines & Immunotherapeutics, 2014, 10, 797-807, DOI: https://doi.org/10.4161/hv.27449.

J.H. Sietsma, A.B. Din, V. Ziv, K.A. Sjollema and O. Yarden, The localization of chitin synthase in membranous vesicles (chitosomes) in Neurospora crassa, Microbiology, 1996, 142, 1591-1596. DOI: https://doi.org/10.1099/13500872-142-7-1591.

C.C. Perry and M. Fraser, Silica deposition and ultrastructure in the cell wall of Equisetum arvense: The importance of cell wall structures and flow control in biosilicification?, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1991, 334, 149-157, DOI: https://doi.org/10.1098/rstb.1991.0104.

S. Shakoor, M. Bhat and S. Mir, Phytoliths in Plants: A Review, J. Bot. Sci., 2015, 3, 10-24, DOI: https://doi.org/10.1016/j.jbiotec.2018.07.036.

H.A. Currie and C.C. Perry, Silica in plants: Biological, biochemical and chemical studies, Annals of Botany, 2007, 100, 1383-1389, DOI: https://doi.org/10.1093/aob/mcm247.

Q. He, X. Gong, S. Xuan, W. Jiang and Q. Chen, Shear thickening of suspensions of porous silica nanoparticles, J. Mater. Sci., 2015, 50, 6041-6049, DOI: https://doi.org/10.1007/s10853-015-9151-5.

E. Onoja, N. Attan, S. Chandren, F.I.A. Razak, A.S.A. Keyon, N.A. Mahat and R.A. Wahab, Insights into the physicochemical properties of the Malaysian oil palm leaves as an alternative source of industrial materials and bioenergy, Malays. J. Fundam. Appl. Sci., 2017, 13, DOI: https://doi.org/10.11113/mjfas.v0n0.681.

P. Chindaprasirt, S. Rukzon and V. Sirivivatnanon, Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash, Constr. Buildi. Mater., 2008, 22, 932-938, DOI: https://doi.org/10.1016/j.conbuildmat.2006.12.001.

C. Jaturapitakkul, K. Kiattikomol, W. Tangchirapat and T. Saeting, Evaluation of the sulfate resistance of concrete containing palm oil fuel ash, Constr. Buildi. Mater., 2007, 21, 1399-1405, DOI: https://doi.org/10.1016/j.conbuildmat.2006.07.005.

U. Hassan and S. Abdu, Characterization of a treated palm oil fuel ash, Sci. World J., 2015, 10, 27-31. DOI: https://doi.org/10.1016/j.jbiotec.2018.07.036.

V. Sata, C. Jaturapitakkul and K. Kiattikomol, Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete, Constr. Buildi. Mater., 2007, 21, 1589-1598. DOI: https://doi.org/10.1016/j.conbuildmat.2005.09.011.

W. Tangchirapat, C. Jaturapitakkul and P. Chindaprasirt, Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete, Constr. Buildi. Mater., 2009, 23, 2641-2646, DOI: 10.1016/j.conbuildmat.2009.01.008.

M. Noushad, I. Ab Rahman, A. Husein and D. Mohamad, Nanohybrid dental composite using silica from biomass waste, Powder Technol., 2016, 299, 19-25, DOI: https://doi.org/10.1016/j.powtec.2016.05.035.

R.A. Bakar, R. Yahya and S.N. Gan, Production of high purity amorphous silica from rice husk, Proc. Chem., 2016, 19, 189-195, DOI: https://doi.org/10.1016/j.proche.2016.03.092.

P. Lu and Y.-L. Hsieh, Highly pure amorphous silica nano-disks from rice straw, Powder Technol., 2012, 225, 149-155, DOI: https://doi.org/10.1016/j.powtec.2012.04.002.

K.-W. Kow, R. Yusoff, A.A. Aziz and E. Abdullah, Characterisation of bio-silica synthesised from cogon grass (Imperata cylindrica), Powder Technol., 2014, 254, 206-213, DOI: https://doi.org/10.1016/j.powtec.2014.01.018.

V. Bartůněk, D. Sedmidubský, D. Bouša and O. Jankovský, Production of pure amorphous silica from wheat straw ash, Green Mater., 2018, 6, 1-5, DOI: 10.1680/jgrma.17.00035.

Deepana G, Shobarajkumar D., Subha C. and S. S., Synthesis and Characterization of Silica from Zea mays, Int. J. Eng. Res. Tech., 2019, 8, 311-316. DOI: https://doi.org/10.2174/157341312803989033.

Y.R. Corrales-Ureña, C. Villalobos-Bermúdez, R. Pereira, M. Camacho, E. Estrada, O. Argüello-Miranda and J.R. Vega-Baudrit, Biogenic silica-based microparticles obtained as a sub-product of the nanocellulose extraction process from pineapple peels, Sci. Rep., 2018, 8, 10417, DOI: https://doi.org/10.1038/s41598-018-28444-4.

M.E. Carneiro, W.L. Magalhães, G. Bolzon De Muñiz, S. Nisgoski and K.G. Satyanarayana, Preparation and characterization of nano silica from Equisetum arvenses, J. Bioproces. Biotech., 2015, 5, 1-7. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1034471.

M. Derakshshani and A. S.N., Preparation and characterization of analcime zeolite nanoparticle using stem sorghum ash as silica source and investigation of silica and aluminum content, crystallization time and temperature changes on the crystallinity of product., 2018. ltbd2017.ir/papers. DOI: https://doi.org/10.1016/j.ijhydene.2016.08.181.

S. Norsuraya, H. Fazlena and R. Norhasyimi, Sugarcane bagasse as a renewable Source of silica to synthesize Santa Barbara Amorphous-15 (SBA-15), Proc. Eng., 2016, 148, 839-846. DOI: https://doi.org/10.1016/j.proeng.2016.06.627.

N. Sapawe, N.S. Osman, M.Z. Zakaria, S.A.S.S.M. Fikry and M.A.M. Aris, Synthesis of green silica from agricultural waste by sol-gel method, Mater. Tod.: Proc., 2018, 5, 21861-21866, DOI: https://doi.org/10.1016/j.matpr.2018.07.043.

M.F. Anuar, Y.W. Fen, M.H.M. Zaid, K.A. Matori and R.E.M. Khaidir, Synthesis and structural properties of coconut husk as potential silica source, Results Phys., 2018, 11, 1-4, DOI: https://doi.org/10.1016/j.rinp.2018.08.018.

D. An, Y. Guo, B. Zou, Y. Zhu and Z. Wang, A study on the consecutive preparation of silica powders and active carbon from rice husk ash, Biomass Bioenergy, 2011, 35, 1227-1234, DOI: https://doi.org/10.1016/j.biombioe.2010.12.014.

R. Zaky, M. Hessien, A. El-Midany, M. Khedr, E. Abdel-Aal and K. El-Barawy, Preparation of silica nanoparticles from semi-burned rice straw ash, Powder Technol., 2008, 185, 31-35, DOI: https://doi.org/10.1016/j.powtec.2007.09.012.

Y. Hsieh, Y. Du, F. Jin, Z. Zhou and H. Enomoto, Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid, Chem. Eng. Res. Des., 2009, 87, 13-18, DOI: https://doi.org/10.1016/j.cherd.2008.07.001.

S. Komarneni and V. Menon, Hydrothermal and microwave-hydrothermal preparation of silica gels, Mater. Lett., 1996, 27, 313-315, DOI: https://doi.org/10.1016/0167-577X(96)00015-8.

V. Bansal, A. Ahmad and M. Sastry, Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica, J. Am. Chem. Soc., 2006, 128, 14059-14066, DOI: https://doi.org/10.1021/ja062113+.

M. Estevez, S. Vargas, V. Castano and R. Rodriguez, Silica nano-particles produced by worms through a bio-digestion process of rice husk, J. Non-Cryst. Solids, 2009, 355, 844-850, DOI: https://doi.org/10.1016/j.jnoncrysol.2009.04.011.

X. Ma, B. Zhou, W. Gao, Y. Qu, L. Wang, Z. Wang and Y. Zhu, A recyclable method for production of pure silica from rice hull ash, Powder Technol., 2012, 217, 497-501, DOI: https://doi.org/10.1016/j.powtec.2011.11.009.

N. Pijarn, A. Jaroenworaluck, W. Sunsaneeyametha and R. Stevens, Synthesis and characterization of nanosized-silica gels formed under controlled conditions, Powder Technol., 2010, 203, 462-468. DOI: https://doi.org/10.1016/j.powtec.2010.06.007.

N.A.S. Omar, Y.W. Fen, K.A. Matori, M.H.M. Zaid, M.R. Norhafizah, M. Nurzilla and M.I.M. Zamratul, Synthesis and optical properties of europium doped zinc silicate prepared using low cost solid state reaction method, J. Mater. Sci.: Mater. Electron, 2016, 27, 1092-1099, DOI: https://doi.org/10.1007/s10854-015-3856-8.

M.P. McDaniel and S.L. Kelly, Reinforcement of Cr/silica catalysts by secondary deposition of silicate oligomers, Appl. Catal. A: Gen., 2018, 554, 88-94, DOI: https://doi.org/10.1016/j.apcata.2018.01.032.

H. Qiu, X. Liang, M. Sun and S. Jiang, Development of silica-based stationary phases for high-performance liquid chromatography, Anal. Bioanal. Chem., 2011, 399, 3307-3322, DOI: https://doi.org/10.1007/s00216-010-4611-x.

J. Zhu, S. Wei, I.Y. Lee, S. Park, J. Willis, N. Haldolaarachchige, D.P. Young, Z. Luo and Z. Guo, Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites, RSC Adv., 2012, 2, 1136-1143, DOI: https://doi.org/10.1039/C1RA00758K.

P. Deshmukh, J. Bhatt, D. Peshwe and S. Pathak, Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash, T. Indian I. Metal, 2012, 65, 63-70, DOI: https://doi.org/10.1007/s12666-011-0071-z.

D.C. Marin, A. Vecchio, L.N. Ludueña, D. Fasce, V.A. Alvarez and P.M. Stefani, Revalorization of rice husk waste as a source of cellulose and silica, Fiber Polym., 2015, 16, 285-293, DOI: https://doi.org/10.1007/s12221-015-0285-5.

M. Hartmann and X. Kostrov, Immobilization of enzymes on porous silicas–benefits and challenges, Chem. Soc. Rev., 2013, 42, 6277-6289, DOI: https://doi.org/10.1039/C3CS60021A.

J. George and H. Ishida, A review on the very high nanofiller-content nanocomposites: their preparation methods and properties with high aspect ratio fillers, Prog. Poly. Sci., 2018, 86, 1-39, DOI: https://doi.org/10.1016/j.progpolymsci.2018.07.006.

R. Arjmandi, A. Hassan, K. Majeed and Z. Zakaria, Rice husk filled polymer composites, Int. J. Polym. Sci., 2015, Article ID 501471, DOI: https://doi.org/10.1155/2015/501471.

B.-Y. Hung, Y. Kuthati, R.K. Kankala, S. Kankala, J.-P. Deng, C.-L. Liu and C.-H. Lee, Utilization of enzyme-immobilized mesoporous silica nanocontainers (IBN-4) in prodrug-activated cancer theranostics, Nanomaterials, 2015, 5, 2169-2191, DOI: https://doi.org/10.3390/nano5042169.

K. Kato, Y. Kawachi and H. Nakamura, Silica–enzyme–ionic liquid composites for improved enzymatic activity, J. Asian Cera. Soc., 2014, 2, 33-40, DOI: https://doi.org/10.1016/j.jascer.2013.12.004.

P. Zucca and E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms, Molecules, 2014, 19, 14139-14194, DOI: https://doi.org/10.3390/molecules190914139.

This mini review highlights the potential use of renewable polymers obtained from agro-industrial biomass. Three major natural polymers are discussed, namely the organic-based biomass cellulose and chitin/chitosan, as well as the inorganic, silica (SiO2). This is followed by discussions on sources of these natural polymers, including techniques of their isolation and purification, as well as the current applications of the cellulosic, chitin and biogenic silica-based composites.
Published
2019-08-31
How to Cite
Wahab, R. A., Gowon, J. A., & Elias, N. (2019). On the Renewable Polymers from Agro-industrial Biomass: A Mini Review. Journal of the Indonesian Chemical Society, 2(1), 24. https://doi.org/10.34311/jics.2019.02.1.24