Systematic Study of Calcination Temperature on Photocatalytic Activity of Luminescent Copper(I) Pyrazolate Complex/Titanium Oxide Composites

Keywords: Calcination, Copper(II) Pyrazolate Complex, Dichlorophenoxyacetic Acid

Abstract

Columnar assembly of luminescent 3,5-dimethyl pyrazolate complexes/titanium oxide composites with different metal ions has shown significant improvement in its photocatalytic activity for the removal and degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D). Since photocatalytic activity of semiconductor titanium oxide (TiO2) with an anatase phase can be improved by calcination temperature, we report the effect of heat treatments on the preparation of copper(I) 3,5-dimethyl pyrazolate complex/titanium oxide composite ([Cu3Pz3]/TiO2) for the removal and degradation of 2,4-D. Photocatalyst composites [Cu3Pz3]/TiO2 were successfully prepared using an impregnation method with different calcination temperature at 373, 473 and 573 K. Although, the activity of photocatalyst composites [Cu3Pz3]/TiO2 was significantly improved with increasing of calcination temperature on pure TiO2, it was slightly reduced with an increase of calcined temperature to 473 and 573 K. These results showed that [Cu3Pz3]/TiO2 was unstable at high temperature due to the decomposition of molecular structure of [Cu3Pz3] during the preparation of the photocatalyst. Hence, suitable calcination temperature is an important parameter to increase photocatalytic activity of photocatalyst composites [Cu3Pz3]/TiO2.

Downloads

Download data is not yet available.

References

C.J. Burns, and G. M. H. Swaen, Review of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Biomonitoring and Epidemiology, Crit. Rev. Toxical., 2012, 42:9, 768-786, DOI: https://doi.org/10.3109/10408444.2012.710576.

S.Z. Cohen, C. Eiden, and M. N. Lorber, Evaluation of Pesticide in Groundwater, ACS Symp. Ser. 315, Am. Chem. Soc., 1986, 170-196, DOI: https://doi.org/10.1021/bk-1986-0315.ch010.

Y.-F. Chao, P.-C. Chen, and S.-L. Wang, Adsorption of 2,4-D on Mg/AL-NO3 Layered Double Hydroxides with Varying Layer Charge Density, Appl. Clay Sci., 2008, 40:1-4, 193-200, DOI: https://doi.org/10.1016/j.clay.2007.09.003.

J. L. Zhang, z. P. Cao, H. W. Zhang, L. M. Zhao, X. D. Sun, and F. Mei, Degradation Characteristics of 2,4-Dichlorophenoxyacetic Acid in Electrobiological System, J. Hazard. Mater., 2013, 262, 137-142, DOI: https://doi.org/10.1016/j.jhazmat.2013.08.038.

C. Y. Kwan and W. Chu, A Study of the Reaction Mechanisms of the Degradation of 2,4-Dichlorophenoxyacetic Acid by Oxalate-mediated Photooxidation, Wat. Res., 2004, 38:19, 4213-4221, DOI: https://doi.org/10.1016/j.watres.2004.06.033.

A. Fujishima, X. Zhang, and D. A. Tryk, TiO2 Photocatalysis and Related Surface Phenomena, Surf. Sci. Rep., 2008, 63, 515-582, DOI: https://doi.org/10.1016/j.surfrep.2008.10.001.

W. Choi, Pure and Modified TiO2 Photocatalysts and their Environmental Applications, Catal Surv. Asia, 2006, 10, 16-28, DOI: https://doi.org/10.1007/s10563-006-9000-2.

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 1995, 95, 69-96, DOI: https://doi.org/10.1021/cr00033a004.

A. D. Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, and B. Ohtani, Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol, J. Phys. Chem. B, 2001, 106, 637-645, DOI: https://doi.org/10.1021/jp013074l.

D. Dvoranova, V. Brezova, M. Mazur, and M. A. Malati, Investigation of Metal-doped Titanium Dioxide Photocatalysts, Appl. Catal. B: Envirom., 2002, 37:2, 91-105, DOI: https://doi.org/10.1016/S0926-3373(01)00335-6.

C. M. Teh, and A. R. A. Mohamed, Roles of Titanium Dioxide and Ion-doped Titanium Dioxide on Photocatalytic Degradation of Organic Pollutants (Phenolic Compounds and Dyes) in Aqueous Solution: A Review, J. Alloys and Comp., 2011, 509:5, 1648-1660, DOI: https://doi.org/10.1016/j.jallcom.2010.10.181.

Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, and L. Chen, Efficient Removal of Herbicide 2,4-Dichlorophenoxyacetic Acid from Water using AG/reduced Graphene Oxide Co-decorated TiO2 Nanotube Arrays, J. Hazard. Mater., 2012, 241-242, 323-330, DOI: https://doi.org/10.1016/j.jhazmat.2012.09.050.

H. O. Lintang, N. A. Roslan, N. Ramlan, M. Shamsuddin, and L. Yuliati, Photocatalyst Composites of Luminescent Trinuclear Copper(I) Pyrazolate Complexes/Titanium Oxide for Degradation of 2,4-Dichlorophenoxyacetic Acid, Mater. Sci. Forum, 2016, 846, 697-701, DOI: https://doi.org/10.4028/www.scientific.net/MSF.846.697.

H. O. Lintang, N. H. Sabran, S. L. Ling, and L. Yuliati, Luminescent Group 11 3,5-Dimethylpyrazolate Complexes/Titanium Oxide Composites for Photocatalytic Removal and Degradation of 2,4-Dichlorophenoxyacetic Acid, Mater. Res. Express, 2019, 6, 064001, DOI: https://doi.org/10.1088/2053-1591/ab058e.

W. R. Siah, H. O. Lintang, M. Shamsuddin, and L. Yuliati, Effect of Calcination Temperatures on the Photocatalytic Activities of Commercial Titania Nanoparticles under Solar Simulator Irradiation, Malaysian J. Anal. Sci., 2015, 11:3, 106-110, DOI: https://doi.org/10.11113/mjfas.v11n3.377.

H. O. Lintang, N. F. Ghazalli, and L. Yuliati, Supramolecular Phosphorescent Trinuclear Copper(I) Pyrazolate Complexes for Vaporchromic Chemosensors of Ethanol, Indones. J Chem., 2017, 17:2, 191-202, DOI: https://doi.org/10.22146/ijc.22553.

N. F. Ghazalli, L. Yuliati, S. Endud, M. Shamsuddin, and H. O. Lintang, Vapochromic Copper(I) Pyrazolate Complex Materials for Phosphorescent Chemosensors of Ethanol, Adv. Mater. Res., 2014, 907, 44-47, DOI: https://doi.org/10.4028/www.scientific.net/AMR.970.44.

H. V. R. Dias, H. V. K. Diyabalanage, M. G. Eldabaja, O. Elbjeirami, M. A. R. Omary, and M . A. Omary, Brightly Phosphorescent Trinuclear Copper(I) Complexes of Pyrazolates: Substituent Effects on Supramolecular Structure and Photophysics, J. Am. Chem. Soc., 2005, 127, 7480-7501, DOI: https://doi.org/10.1021/ja0427146.

W. R. Siah, H. O. Lintang, M. Shamsuddin, and L. Yuliati, High Photocatalytic Activity of Mixed Anatase-rutile Phase on Commercial TiO2 Nanoparticles, IOP Conf. Ser. Mat. Sci. Eng., 2016, 107, 012005, DOI: https://doi.org/10.1088/1757-899X/107/1/012005.

L. Yuliati, W. R. Siah, N. A. Roslan, M. Shamsuddin, and H. O. Lintang, Modification of Titanium Dioxide Nanoparticles with Copper Oxide Co-catalyst for Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid, Malaysian, J. Anal. Sci., 2016, 20, 171-178, DOI: https://doi.org/10.17576/mjas-2016-2001-18.

P. Praveen, G. Viruthagiri, S. Mugundan, and N. Shanmugan, Structural, Optical and Morphological Analyses of Pristine Titanium Dioxide Nanoparticles-synthesized via Sol-gel Route, Spectrochim. Acta A., 2014, 117, 622-629, DOI: https://doi.org/10.1016/j.saa.2013.09.037.

W. R. Siah, H. O. Lintang, M. Shamsuddin, H. Yoshida, and L. Yuliati, Masking Effect of Copper Oxides Photodeposited on Titanium Dioxide: Exploring UV, Visible, and Solar Light Activity, Catal. Sci. Tech., 2016, 6, 5079-5087, DOI: https://doi.org/10.1039/c6cy00074f.

Luminescent composites [Cu3Pz3]/TiO2  enable as a semiconductor photocatalyst with a significant improvement on photocatalytic activity for removal and degradation of 2,4-D. This higher photocatalytic activity compared to TiO2 is due to the presence of columnar assembly for delaying electron-hole recombination between valance and conduction bands. Indeed, calcination temperature is important parameter to increase photocatalytic activity of photocatalyst composites.
Published
2019-08-31
How to Cite
Sabran, N. H., Yuliati, L., Lee, S. L., & Lintang, H. O. (2019). Systematic Study of Calcination Temperature on Photocatalytic Activity of Luminescent Copper(I) Pyrazolate Complex/Titanium Oxide Composites . Journal of the Indonesian Chemical Society, 2(1), 54. https://doi.org/10.34311/jics.2019.02.1.54