Biocatalyst of Nanocomposite using Functionalized Low-Cost Activated Carbon from Zea mays L. (maize) Husk Leaf with Lipase for Hydrolysis of Olive Oil

  • Nursyafreena Attan Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia https://orcid.org/0000-0002-7366-7864
  • Roswanira Abd Wahab Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru Malaysia https://orcid.org/0000-0002-9982-6587
  • Nur Anith Mohd Saharuddin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
  • Fathin Najihah Nor Mohd Hussin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Keywords: Candida rugosa lipase, Functionalization, Immobilization, Activated carbon, Zea mays L., Kinetic

Abstract

The expansion of agricultural land and commercial food industries to meet rising global demands have imparted new challenges to the environment and human activities. Poor management of the generated waste by-products perpetually contributes to increased ecological burden. This study proposed the use of chemically-functionalized activated carbon sourced from Zea mays L. husk leave (FZHLAC) as support for the covalent immobilization of Candida rugosa lipase (CRL). This work aims to establish the protocol of preparing functionally satisfactory FZHLAC immobilized CRL (CRL-FZHLAC) and to assess its efficacy in hydrolyzing olive oil as the model reaction. Results of FT-IR spectroscopy, SEM, TGA, X-ray diffraction and BET confirmed that CRL-FZHLAC was successfully prepared with an enzyme loading of 13% (v/v). Maximum activity for hydrolysis (71.24 µmol/min/g) was achieved under an optimized condition of 50 °C, 200 rpm at pH 8 with reusability up to 5 cycles. Hydrolysis at 70 °C best fitted the first order reaction while the activation energies varies from 55.37 to -41.22 kJ/mol. The findings showed that CRL-FZHLAC is prospectively useful as biocatalysts to carry out a variety of aqueous-based biotransformation reactions

Downloads

Download data is not yet available.

References

A. F. Owolabi, M. K. M. Haafiz, M. S. Hossain, M. H. Hussin, and M. R.N. Fazita, Influence of Alkaline Hydrogen Peroxide Pre-hydrolysis on the Isolation of Microcrystalline Cellulose from Oil Palm Fronds, Int. J. Biol. Macromol., 2017, 95, 1228-1234, DOI: https://doi.org/10.1016/j.ijbiomac.2016.11.016.

M. Demir, Z. Kahveci, B. Aksoy, N. K. R. Palapati, A. Subramanian, H. T. Cullinan, H. M. El-Kaderi, C. T. Harris, and R. B. Gupta, Graphitic Biocarbon from Metal-catalyzed Hydrothermal Carbonization of Lignin, Ind. Eng. Chem. Res., 2015, 54, 10731-10739, DOI: https://doi.org/10.1021/acs.iecr.5b02614.

M. Islam, Y.H. Pei, and S. Mangharam, Trans-boundary Haze Pollution in Southeast Asia: Sustainability through Plural Environmental Governance, Sustainability, 2016, 8, 499, DOI: https://doi.org/10.3390/su8050499.

A. A. Jalil, S. Triwahyono, M. R. Yaakob, Z. Z. A. Azmi, N. Sapawe, N. H. N. Kamarudin, H. D. Setiabudi, N. F. Jaafar, S. M. Sidik, and S. H. Adam, Utilization of Bivalve Shell-treated Zea mays L. (maize) Husk Leaf as a Low-cost Biosorbent for Enhanced Adsorption of Malachite Green, Bioresour. Technol., 2012, 120, 218-224, DOI: https://doi.org/10.1016/j.biortech.2012.06.066.

Z. Gao, Y. Zhang, N. Song, and X. Li, Biomass-Derived Renewable Carbon Materials for Electrochemical Energy Storage, Mater. Res. Lett., 2017, 5, 69-88, DOI: https://doi.org/10.1080/21663831.2016.1250834.

A. Cheenmatchaya, and S. Kungwankunakorn, Preparation of Activated Carbon Derived from Rice Husk by Simple Carbonization and Chemical Activation for Using as Gasoline Adsorbent, Int. J. Environ. Sci. Dev., 2014, 5, 171-175, DOI: https://doi.org/10.7763/ijesd.2014.v5.472.

P. Hadi, M. Xu, C. Ning, C. S. K. Lin, and G. McKay, A Critical Review on Preparation, Characterization and Utilization of Sludge-Derived Activated Carbons for Wastewater Treatment, Chem. Eng. J., 2015, 260, 895-906, DOI: https://doi.org/10.1016/j.cej.2014.08.088.

N. Elias, S. Chandren, N. Attan, N. A. Mahat, F. I. A. Razak, J. Jamalis, and R. A. Wahab, Structure and Properties of Oil Palm-based Nanocellulose Reinforced Chitosan Nanocomposite for Efficient Synthesis of Butyl Butyrate, Carbohydr. Polym., 2017, 176, 281-292, DOI: https://doi.org/10.1016/j.carbpol.2017.08.097.

A. Ros, M. A. Lillo-Ródenas, E. Fuente, M. . Montes-Morán, M. J. Martín, and A. Linares-Solano, High Surface Area Materials Prepared from Sewage Sludge-based Precursors, Chemosphere, 2006, 65, 132-140, https://doi.org/10.1016/j.chemosphere.2006.02.017.

H. M. Ehrhardt, and H. J. Rehm, Semicontinuous and Continuous Degradation of Phenol by Pseudomonas putida P8 Adsorbed on Activated Carbon, Appl. Microbiol. Biotechnol., 1989, 30, 312-317, DOI: https://doi.org/10.1007/bf00256224.

L. Furegon, A. D. B. Peruffo, and A. Curioni, Immobilization of Rice Limit Dextrinase on γ-Alumina Beads and its Possible Use in Starch Processing, Process Biochem., 1997, 32, 113-120, DOI: https://doi.org/10.1016/s0032-9592(96)00054-4.

N. H. C. Marzuki, N. A. Mahat, F. Huyop, H. Y. Aboul-Enein, and R. A. Wahab, Sustainable Production of the Emulsifier Methyl Oleate by Candida rugosa Lipase Nanoconjugates, Food Bioprod. Process., 2015, 96, 211-220, DOI: https://doi.org/10.1016/j.fbp.2015.08.005.

N.H.C. Marzuki, N.A. Mahat, F. Huyop, N.A. Buang, and R.A. Wahab, Candida rugosa Lipase Immobilized onto Acid-functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate, Appl. Biochem. Biotechnol., 2015, 177, 967-984, DOI: https://doi.org/10.1007/s12010-015-1791-z.

F. M. A. Manan, I. N. A. Rahman, N. H. C. Marzuki, N. A. Mahat, F. Huyop, and R. A. Wahab, Statistical Modelling of Eugenol Benzoate Synthesis using Rhizomucor miehei lipase Reinforced Nanobioconjugates, Process Biochem., 2016, 51, 249-262, DOI: https://doi.org/10.1016/j.procbio.2015.12.002.

A. A. Isah, N. A. Mahat, J. Jamalis, N. Attan, I. I. Zakaria, F. Huyop, and R. A. Wahab, Synthesis of Reranyl Propionate in a Solvent-free Medium using Rhizomucor miehei Lipase Covalently Immobilized on Chitosan–graphene Oxide beads, Prep. Biochem. Biotechnol., 2017, 47, 199-210, DOI: https://doi.org/10.1080/10826068.2016.1201681.

A. S. Rani, M. L. M. Das, and S. Satyanarayana, Preparation and Characterization of Amyloglucosidase Adsorbed on Activated Charcoal, J. Mol. Catal. B Enzym., 2000, 10, 471-476, DOI: https://doi.org/10.1016/s1381-1177(99)00116-2.

C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J.M. Guisan, and R. Fernandez-Lafuente, Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques, Enzyme Microb. Technol., 2007, 40, 1451-1463, DOI: https://doi.org/10.1016/j.enzmictec.2007.01.018.

N. R. Mohamad, N. H. C. Marzuki, N. A. Buang, F. Huyop, and R. A. Wahab, An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes, Biotechnol. Biotechnol. Equip., 2015, 29, 205-220, DOI: https://doi.org/10.1080/13102818.2015.1008192

K. Ramani, S. Karthikeyan, R. Boopathy, L. J. Kennedy, A. B. Mandal, and G. Sekaran, Surface Functionalized Mesoporous Activated Carbon for the Immobilization of Acidic Lipase and their Application to Hydrolysis of Waste Cooked Oil: Isotherm and Kinetic Studies, Process Biochem., 2012, 47, 435-445, DOI: https://doi.org/10.1016/j.procbio.2011.11.025.

M. M. Bradford, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding, Anal. Biochem., 1976, 72, 248-254, DOI: https://doi.org/10.1006/abio.1976.9999.

D. Y. Kwon, and J. S. Rhee, A Simple and Rapid Colorimetric Method for Determination of Free Fatty Acids for Lipase Assay, J. Am. Oil Chem. Soc., 1986, 63, 89-92, DOI: https://doi.org/10.1007/bf02676129.

A. M. Girelli, L. Salvagni, and A. M. Tarola, Use of Lipase Immobilized on Celluse Support for Cleaning aged Oil Layers, J. Braz. Chem. Soc., 2012, 23, 585-592, DOI: https://doi.org/10.1590/s0103-50532012000400002.

N. Kharrat, Y.B. Ali, S. Marzouk, and Y.-T. Gargouri, M. Karra-Châabouni, Immobilization of Rhizopus oryzae lipase on Silica Aerogels by Adsorption: Comparison with the Free Enzyme, Process Biochem., 2011, 46, 1083-1089, DOI: https://doi.org/10.1016/j.procbio.2011.01.029.

B. L. Tee, and G. Kaletunç, Immobilization of a Thermostable α‐Amylase by Covalent Binding to an Alginate Matrix Increases High Temperature Usability, Biotechnol. Prog., 2009, 25, 436-445, DOI: https://doi.org/10.1002/btpr.117.

N. R. Mohamad, N. A. Buang, N. A. Mahat, Y. Y. Lok, F. Huyop, H. Y. Aboul-Enein, and R. A. Wahab, A Facile Enzymatic Synthesis of Geranyl Propionate by Physically Adsorbed Candida rugosa Lipase onto Multi-walled Carbon Nanotubes, Enzyme Microb. Technol., 2015, 72, 49-55, DOI: https://doi.org/10.1016/j.enzmictec.2015.02.007.

T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, Amino-functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems, Chem. Mater., 2005, 17, 1290-1295, DOI: https://doi.org/10.1021/cm048357f.

D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, and C. U. Pittman Jr, Development of Magnetic Activated Carbon from Almond Shells for Trinitrophenol Removal from Water, Chem. Eng. J., 2011, 172, 1111-1125, DOI: https://doi.org/10.1016/j.cej.2011.06.054.

A. Nakahira, S. Nishida, and K. Fukunishi, Synthesis of Magnetic Activated Carbons for Removal of Environmental Endocrine Disrupter using Magnetic Vector, J. Ceram. Soc. Japan, 2006, 114, 135-137, DOI: https://doi.org/10.2109/jcersj.114.135.

D. Liu, W. Zhang, H. Lin, Y. Li, H. Lu, and Y. Wang, A Green Technology for the Preparation of High Capacitance Rice Husk-based Activated Carbon, J. Clean. Prod., 2016, 112, 1190-1198, DOI: https://doi.org/10.1016/j.jclepro.2015.07.005.

R. Yudianti, H. Onggo, Y. Saito, T. Iwata, and J. Azuma, Analysis of Functional Group Sited on Multi-wall Carbon Nanotube Surface, Open Mater. Sci. J., 2011, 5, 242-247, DOI: https://doi.org/10.2174/1874088x01105010242.

N. Ž. Prlainović, D. I. Bezbradica, Z. D. Knežević-Jugović, S. I. Stevanović, M. L. A. Ivić, P. S. Uskoković, and D. Ž. Mijin, Adsorption of Lipase from Candida rugosa on Multi Walled Carbon Nanotubes, J. Ind. Eng. Chem., 2013, 19, 279-285, DOI: https://doi.org/10.1016/j.jiec.2012.08.012.

J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, and G. Xing, Preparation and Characterization of Activated Carbon from Reedy Grass Leaves by Chemical Activation with H3PO4, Appl. Surf. Sci., 2014, 320, 674-680, DOI: https://doi.org/10.1016/j.apsusc.2014.08.178.

M. R. Johan, S. H. M. Suhaimy, and Y. Yusof, Physico-chemical Studies of Cuprous Oxide (Cu2O) Nanoparticles Coated on Amorphous Carbon Nanotubes (α-CNTs), Appl. Surf. Sci., 2014, 289, 450-454, DOI: https://doi.org/10.1016/j.apsusc.2013.11.002.

T. Raghavendra, A. Basak, L. M. Manocha, and A. R. Shah, D. Madamwar, Robust Nanobioconjugates of Candida antarctica Lipase –Multiwalled Carbon Nanotubes: Characterization and Application for Multiple Usages in non-aqueous Biocatalysis, Bioresour. Technol., 2013, 140, 103-110, DOI: https://doi.org/10.1016/j.biortech.2013.04.071.

N. H. C. Marzuki, F. Huyop, H. Y. Aboul-Enein, N. A. Mahat, and R. A. Wahab, Modelling and Optimization of Candida rugosa Nanobioconjugates Catalysed Synthesis of Methyl Oleate by Response Surface Methodology, Biotechnol. Biotechnol. Equip., 2015, 29, 1113-1127, DOI: https://doi.org/10.1080/13102818.2015.1078744.

A. R. Hidayu, and N. Muda, Preparation and Characterization of Impregnated Activated Carbon from Palm Kernel Shell and Coconut Shell for CO2 Capture, Procedia Eng., 2016, 148, 106-113, DOI: https://doi.org/10.1016/j.proeng.2016.06.463.

A. Elmouwahidi, E. Bailón-García, A. F. Pérez-Cadenas, F. J. Maldonado-Hódar, and F. Carrasco-Marín, Activated Carbons from KOH and H3PO4-activation of Olive Residues and its Application as Supercapacitor Electrodes, Electrochim. Acta, 2017, 229, 219-228, DOI: https://doi.org/10.1016/j.electacta.2017.01.152.

L. Li, S. Liu, and J. Liu, Surface Modification of Coconut Shell Based Activated Carbon for the Improvement of Hydrophobic VOC Removal, J. Hazard. Mater., 2011, 192, 683-690, DOI: https://doi.org/10.1016/j.jhazmat.2011.05.069.

E. I. El-Shafey, S. N. F. Ali, S. Al-Busafi, and H. A. J. Al-Lawati, Preparation and Characterization of Surface Functionalized Activated Carbons from Date Palm Leaflets and Application for Methylene Blue Removal, J. Environ. Chem. Eng., 2016, 4, 2713-2724, DOI: https://doi.org/10.1016/j.jece.2016.05.015.

A. Jamie, A. S. Alshami, Z. O. Maliabari, and M. A. Ateih, Development and Validation of a Kinetic Model for Enzymatic Hydrolysis using Candida rugosa Lipase, J. Bioprocess. Biotech., 2017, 7, 1-7, DOI: https://doi.org/10.1002/ep.12375.

R. A. Wahab, M. Basri, R. N. Z. R. A. Rahman, A. B. Salleh, M. B. A. Rahman, N. Chaibakhsh, and T. C. Leow, Enzymatic Production of a Solvent-Free Methyl Butyrate via Response Surface Methodology Catalyzed by a Novel Thermostable Lipase from Geobacillus zalihae, Biotechnol. Biotechnol. Equip., 2014, 28, 1065-1072, DOI: https://doi.org/10.1080/13102818.2014.978220.

L. J. Gibson, The hierarchical structure and mechanics of plant materials, J. R. Soc. Interface, 2012, 9, 2749-2766, DOI: https://doi.org/10.1098/rsif.2012.0341.

V. V. Kuperkar, V. G. Lade, A. Prakash, and V. K. Rathod, Synthesis of Isobutyl Propionate using Immobilized Lipase in a Solvent Free System: Optimization and Kinetic Studies, J. Mol. Catal. B Enzym., 2014, 99, 143-149, DOI: https://doi.org/10.1016/j.molcatb.2013.10.024.

S. Gupta, P. Ingole, K. Singh, and A. Bhattacharya, Comparative Study of the Hydrolysis of Different Oils by Lipase‐Immobilized Membranes, J. Appl. Polym. Sci., 2012, 124, E17–E26, DOI: https://doi.org/10.1002/app.35400.

S. Saktaweewong, P. Phinyocheep, C. Ulmer, E. Marie, A. Durand, and P. Inprakhon, Lipase Activity in Biphasic Media: Why Interfacial Area is a significant parameter?, J. Mol. Catal. B Enzym. 2011, 70, 8-16, DOI: https://doi.org/10.1016/j.molcatb.2011.01.013

R. Sharma, Y. Chisti, and U. C. Banerjee, Production, Purification, Characterization, and Applications of Lipases, Biotechnol. Adv., 2001, 19, 627-662, DOI: https://doi.org/10.1016/s0734-9750(01)00086-6.

C. M. F. Soares, H. F. De Castro, F. F. De Moraes, and G. M. Zanin, Characterization and Utilization of Candida rugosa Lipase Immobilized on Controlled Pore Silica. In Proceedings of the Twentieth Symposium on Biotechnology for Fuels and Chemicals; Springer, 1999; pp. 745-757, DOI: https://doi.org/10.1007/978-1-4612-1604-9_68.

S. Al-Zuhair, M. Hasan, and K. B. Ramachandran, Kinetics of the Enzymatic Hydrolysis of Palm Oil by Lipase, Process Biochem., 2003, 38, 1155-1163, DOI: https://doi.org/10.1016/s0032-9592(02)00279-0.

G. D. Yadav, and K. M. Devi, Immobilized Lipase-catalysed Esterification and Transesterification Reactions in Non-aqueous Media for the Synthesis of Tetrahydrofurfuryl Butyrate: Comparison and Kinetic Modeling, Chem. Eng. Sci., 2004, 59, 373-383, DOI: https://doi.org/10.1016/j.ces.2003.09.034.

K. Ramani, R. Boopathy, C. Vidya, L. J. Kennedy, M. Velan, and G. Sekaran, Immobilisation of Pseudomonas gessardii Acidic Lipase Derived from Beef Tallow onto Mesoporous Activated Carbon and its Application on Hydrolysis of Olive Oil, Process Biochem., 2010, 45, 986-992, DOI: https://doi.org/10.1016/j.procbio.2010.03.005.

N. C. A. Silva, J. S. Miranda, I. C. A. Bolina, W. C. Silva, D. B. Hirata, H. F. de Castro, and A. A. Mendes, Immobilization of Porcine Pancreatic Lipase on Poly-hydroxybutyrate Particles for the Production of Ethyl Esters from Macaw Palm Oils and Pineapple flavor, Biochem. Eng. J., 2014, 82, 139-149, DOI: https://doi.org/10.1016/j.bej.2013.11.015.

M. Hadadi, and A. Habibi, Candida rugosa Lipase Immobilized on Functionalized Magnetic Fe3O4 Nanoparticles as a Sustainable Catalyst for Production of Natural Epoxides, Chem. Papers., 2019, 73, 1917-1923, DOI: https://doi.org/10.1007/s11696- 019-00741-w.

The success of FZHLAC support preparation from ZHLAC envisions the feasibility of the biomass as a source of activated carbon to hyperactivate and stabilize lipase. Immobilization of Candida rugosa lipase (CRL) onto functionalized FZHLAC improved the catalytic efficacy and robustness for repeated catalysis of hydrolytic reactions. Crucially, the study showed that the highly porous and rich surface groups of FZLAC can boost the stability and activity of the immobilized CRL for catalyzing important aqueous-based biotransformation reactions.
Published
2019-12-30
How to Cite
Attan, N., Abd Wahab, R., Mohd Saharuddin, N. A., & Mohd Hussin, F. N. N. (2019). Biocatalyst of Nanocomposite using Functionalized Low-Cost Activated Carbon from Zea mays L. (maize) Husk Leaf with Lipase for Hydrolysis of Olive Oil. Journal of the Indonesian Chemical Society, 2(2), 91. https://doi.org/10.34311/jics.2019.02.2.91