One-pot Facile Preparation of Amino-functionalized Silica Hybrid Monoliths for Mixed-mode Chromatography

  • Firda Furqani Division of Materials Engineering, Graduate School of Engineering, Gifu University, Japan
  • Lee Wah Lim Division of Materials Engineering, Graduate School of Engineering, Gifu University, Japan
  • Toyohide Takeuchi Division of Materials Engineering, Graduate School of Engineering, Gifu University, Japan
Keywords: Amino-functionalized mixed-mode stationary phase, Capillary liquid chromatography, Hybrid monolithic column, Inorganic anions, Nucleosides

Abstract

Silica hybrid monolithic columns were prepared using two precursors, in which organo-functionalized trialkoxysilanes are mixed with tetraalkoxysilanes. In this study, several types of amino-functionalized silica hybrid monolithic columns were prepared via single-step “one-pot” approach, and the amount of silica precursors, porogens, as well as the reaction conditions were optimized. The preparation was carried out by mixing the silica precursors, i.e. tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS) with amino precursors such as aminopropyltrimethoxysilane (APTES), aminoethylaminopropyl-trimethoxysilane (AEAPTMS), and phenylaminopropyltrimethoxysilane (PAPTMS) in a porogenic solution. The chromatographic performance of these hybrid monolithic columns was optimized by investigating several parameters through the separation of inorganic anions (IO3-, BrO3-, Br-, NO2-, NO3-, I-, SCN-) and some polar compounds (thymine, thymidine, adenosine, adenine, uridine). Results showed that the silica hybrid monolithic columns could be operated at higher flow-rate that favors rapid separation. The run-to-run repeatability of Si-APTES and Si-PAPTMS hybrid monolithic columns were satisfactory with relative standard deviations (n = 5) of less than 8% for all the analyte anions.

Downloads

Download data is not yet available.

References

H. Small, T. S. Stevens, and W. C. Bauman, Novel Ion Exchange Chromatographic Method Using Conductimetric Detection, Anal. Chem., 1975, 47, 1801-1809, DOI: https://doi.org/10.1021/ac60361a017.

P. R. Haddad, P. N. Nesterenko, and W. Buchberger, Recent Developments and Emerging Directions in Ion Chromatography, J. Chromatogr. A, 2008, 1184(1-2), 456-473, DOI: https://doi.org/10.1016/j.chroma.2007.10.022.

T. Takeuchi, B. Oktavia, and L. W. Lim, Poly(ethylene oxide)-bonded Stationary Phase for Capillary Ion Chromatography, Anal. Bioanal. Chem., 2009, 393(4), 1267-1272, DOI: https://doi.org/10.1007/s00216-008-2533-7.

T. Takeuchi, and L. W. Lim, Multifunctional Separation Mechanism on Poly(oxyethylene) Stationary Phases in Capillary Liquid Chromatography, Anal. Sci., 2010, 26(9), 937-941, DOI: https://doi.org/10.2116/analsci.26.937.

R. Linda, L. W. Lim, and T. Takeuchi, Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions in capillary ion chromatography, J. Chromatogr. A, 2013, 1294, 117-121, DOI: https://doi.org/10.1016/j.chroma.2013.04.052.

I. Kawase, L. W. Lim, and T. Takeuchi, Investigation of Chromatographic Performance of Hyperbranched Amine-Modified Stationary Phases in Ion Chromatography, Chromatography, 2017, 38, 9-14, DOI: https://doi.org/10.15583/jpchrom.2016.018.

M. G. Kiseleva, and P. N. Nesterenko, Phenylaminopropyl Silica- A New Specific Stationary Phase for High Performance Liquid Chromatography of Phenols, J. Chromatogr. A, 2000, 898(1), 23-34, DOI: https://doi.org/10.1016/S0021-9673(00)00872-4.

M. G. Kiseleva, and P. N. Nesterenko, Novel Stationary Phase with Regulated Anion-Exchange Capacity, J. Chromatogr. A, 2001, 920(1-2), 87-93, DOI: https://doi.org/10.1016/S0021-9673(01)00694-X.

N. Takayama, L. W. Lim, and T. Takeuchi, Optimization and Investigation of Zwitterionic Monolithic Stationary Phases for Capillary Ion Chromatography, Anal. Sci., 2017, 33(5), 631-634, DOI: https://doi.org/10.2116/analsci,33,631.

S. Pelletier, and C. A. Lucy, Achieving Rapid Low-Pressure Ion Chromatography Separations on Short Silica-Based Monolithic Columns, J. Chromatogr. A, 2006, 1118(1) 12-18, DOI: https://doi.org/10.1016/j.chroma.2006.03.072.

L. Barron, P. N. Nesterenko, D. Diamond, M. O’Toole, K.T. Lau, and B. Paull, Low Pressure Ion Chromatography with A Low Cost Paired Emitter-Detector Diode Based Detector for The Determination of Alkaline Earth Metals in Water Samples, Anal. Chim. Acta., 2006, 577(1), 32-37, DOI: https://doi.org/10.1016/j.aca.2006.05.101.

X. Chen, H. D. Tolley, and M. L. Lee, Preparation of Zwitterionic Polymeric Monolithic Columns for Hydrophilic Interaction Capillary Liquid Chromatography, J. Sep. Sci., 2011, 34(16-17), 2088-2096, DOI: https://doi.org/10.1002/jssc.201100155.

L. Zhang, B. Chen, H. Peng, M. He, and B. Hu, Aminopropyltriethoxysilane-Silica Hybrid Monolithic Capillary Microextraction Combined with Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Elements in Biological Samples, J. Sep. Sci., 2011, 34(16-17), 2247-2254, DOI: https://doi.org/10.1002/jssc.201100173.

Z. Zhang, F. Wang, B. Xu, H. Qin, M. Ye, and H. Zou, Preparation of Capillary Hybrid Monolithic Column with Sulfonate Strong Cation Exchanger for Proteome Analysis, J. Chromatogr. A, 2012, 1256, 136-143, DOI: https://doi.org/10.1016/j.chroma.2012.07.071.

X. Chen, H. D. Tolley, and M. L. Lee, Monolithic Capillary Columns Synthesized from A Single Phosphate-Containing Dimethacrylate Monomer for Cation-Exchange Chromatography of Peptides and Proteins, J. Chromatogr. A, 2011, 1218(28), 4322-4331, DOI: https://doi.org/10.1016/j.chroma.2011.04.074.

Z. Lin, H. Huang, S. Li, J. Wang, X. Tan, L. Zhang, and G. Chen, Preparation of Phenylboronicacid-Silica Hybrid Monolithic Column with One-Pot Approach for Capillary Liquid Chromatography of Biomolecules, J. Chromatogr. A, 2013, 1271(1), 115-123, DOI: https://doi.org/10.1016/j.chroma.2012.11.038.

Y. Li, M. L. Lee, J. Jin, and J. Chen, Preparation and Characterization of Neutral Poly(ethylene glycol) Methacrylate-based Monolith for Normal Phase Liquid Chromatography, Talanta, 2012, 99, 91-98, DOI: https://doi.org/10.1016/j.talanta.2012.04.066.

Y. Ueki, T. Umemura, J. Li, T. Odake, and K. Tsunoda, Preparation and Application of Methacrylate-based Cation-Exchange Monolithic Columns for Capillary Ion Chromatography, Anal. Chem., 2004, 76(23), 7007-7012, DOI: https://doi.org/10.1021/ac040079g.

G. Huang, Q. Lian, W. Zeng, and Z. Xie, Preparation and Evaluation of A Lysine-bonded Silica Monolith as Polar Stationary Phase for Hydrophilic Interaction Pressurized Capillary Electrochromatography, Electrophoresis, 2008, 29(18), 3896-3904, DOI: https://doi.org/10.1002/elps.200700949.

O. Nunez T. Ikegami, W. Kajiwara, K. Miyamoto, K. Horie, and N. Tanaka, Preparation of High Efficiency and Highly Retentive Monolithic Silica Capillary Columns for Reversed-phase Chromatography by Chemical Modification by Polymerization of Octadecyl Methacrylate, J. Chromatogr. A, 2007, 1156(1-2), 35-44, DOI: https://doi.org/10.1016/j.chroma.2006.12.028.

S. D. Chambers, K. M. Glenn, and C. A. Lucy, Developments in Ion Chromatography using Monolithic Columns, J. Sep. Sci., 2007, 30(11), 1628-1645, DOI: 10.1002/jssc.200700090.

S. Laschober, and E. Rosenberg, Chromatographic Characterisation of Monolithic Capillary Columns for Liquid Chromatography based on Methyltrimethoxysilane as Sole Precursor, J. Chromatogr. A, 2008, 1191(1-2), 282-291, DOI: https://doi.org/10.1016/j.chroma.2008.03.064.

H. Zou, X. Hung, M. Ye, and Q. Luo, Monolithic Stationary Phases for Liquid Chromatography and Capillary Electrochromatography, J. Chromatogr. A, 2002, 954(1-2), 5-32, DOI: https://doi.org/10.1016/S0021-9673(02)00072-9.

A. E. Danks, S. R. Hall, and Z. Schnepp, The Evolution of “Sol-Gel” Chemistry as A Technique for Material Synthesis, Mater. Horiz., 2016, 3, 91-112, DOI: https://doi.org/10.1039/C5MH00260E.

L. Yan, Q. Zhang, J. Zhang, L. Zhang, T. Li, Y. Feng, L. Zhang, W. Zhang, and Y. Zhang, Hybrid Organic-Inorganic Monolithic Stationary Phase for Acidic Compounds Separation by Capillary Electrochromatography, J. Chromatogr. A, 2004, 1046(1-2), 255-261, DOI: https://doi.org/10.1016/j.chroma.2004.06.024.

J. Musgo, J.C.Echeverria, J. Estella, M. Laguna, and J. J. Garrido, Ammonia-catalyzed Silica Xerogels: Simultaneous Effects of pH, Synthesis Temperature, and Ethanol:TEOS and Water:TEOS Molar Ratios on Textural and Structural Properties, Micropor. Mesopor. Mater, 2009, 118 (1-3), 280-287, DOI: https://doi.org/10.1016/j.micromeso.2008.08.044.

G. Ding, Z. Da, R. Yuan, and J. J. Bao, Reversed-phase and Weak Anion Exchange Mixed-mode Silica-based Monolithic Column for Capillary Electrochromatography, Electrophoresis, 2006, 27(17), 3363-3372, DOI: https://doi.org/10.1002/elps.200500931.

A.-M. Siouffi, Silica Gel-based Monoliths Prepared by the Sol-Gel Method: Facts and Figures, J. Chromatogr. A, 2003, 1000 (1-2), 801-818, DOI: https://doi.org/10.1016/s0021-9673(03)00510-7.

C. A. Milea, C. Bogatu, and A. Duta, The Influence of Parameters in Silica Sol-Gel Process, Bulletin of the Transilvania University of Brasov, Series I: Engineering Sciences, 2011, 4(53), 59-66.

F. Ye, Z. Xie, X. Wu, X. Lin, and G. Chen, Phenylaminopropyl Silica Monolithic Column for Pressure Assisted Capillary Electrochromatography, J. Chromatogr. A, 2006, 1117(2), 170-175, DOI: https://doi.org/10.1016/j.chroma.2006.03.085.

F. Zheng, and B. Hu, Novel Bimodal Porous N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane-silica Monolithic Capillary Microextraction and Its Application to the Fractionation of Aluminum in Rainwater and Fruit Juice by Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, Spectrochim. Acta Part B, 2008, 63(1), 9-18, DOI: https://doi.org/10.1016/j.sab.2007.10.034.

K. Wang, Y. Chen, H. Yuang, Y. Li, L. Nie, and S. Yao, Modification of VTMS Hybrid Monolith via Thiol-ene Click Chemistry for Capillary Electrochromatography, Talanta, 2012, 91, 52-59, DOI: https://doi.org/10.1016/j.talanta.2012.01.009.

J. D. Hayes, and A. Malik, Sol−Gel Monolithic Columns with Reversed Electroosmotic Flow for Capillary Electrochromatography, Anal. Chem., 2000, 72(17), 4090-4099, DOI: https://doi.org/10.1021/ac000120p.

S. Yu, S. Yang, P. Zhou, K. Zhou, J. Wang, and X. Chen, Rapid Recovery of DNA from Agarose Gel Slices by Coupling Electroelution with Monolithic SPE, Electrophoresis, 2009, 30(12), 2110-2116, DOI: https://doi.org/10.1002/elps.200800777.

J. Estella, J.C. Echeverria, M. Laguna, and J. J. Garrido, Silica Xerogels of Tailored Porosity as Support Matrix for Optical Chemical Sensors. Simultaneous Effect of pH, Ethanol:TEOS and Water:TEOS Molar ratios, and Synthesis Temperature on Gelation Time, and Textural and Structural Properties, J. Non-Cryst. Solids, 2007, 353(1), 286-294, DOI: https://doi.org/10.1016/j.jnoncrysol.2006.12.006.

G. D. Christian, Analytical Chemistry, 6th Edition, John Willey & Sons, 111 River Street Hoboken United States of America, 2004, 568-569.

Z. Yang, Z. Li, F. Zhang, B. Yang, and S. Zhang, A Novel Hydrophilic Polymer-based Anion Exchanger Grafted by Quaternized Polyethyleneimine for Ion Chromatography, Talanta, 2019, 197, 199-203, DOI: https://doi.org/10.1016/j.talanta.2019.01.024.

Amino-functionalized silica precursors was used in the preparation of hybrid monolithic column to reduce the preparation time via one-pot approach. The amine groups in the structure can provide weak anion exchange interaction and also hydrophilic interaction. The synthesized hybrid monolithic columns revealed good mechanical stability and good separation repeatability.
Published
2019-12-30
How to Cite
Furqani, F., Lim, L. W., & Takeuchi, T. (2019). One-pot Facile Preparation of Amino-functionalized Silica Hybrid Monoliths for Mixed-mode Chromatography. Journal of the Indonesian Chemical Society, 2(2), 81. https://doi.org/10.34311/jics.2019.02.2.81