Experimental and Theoretical Study of the Silicon-Hydrogen Bond Activation by Rhodium Dicarbonyl Complex in Solution

  • Agus Abhi Purwoko Chemistry Education Study Programme, University of Mataram, Indonesia http://orcid.org/0000-0003-4316-1229
  • Saprizal Hadisaputra Chemistry Education Study Programme, University of Mataram, Indonesia
  • Alistair J. Less Chemistry Department, Binghamton University, United States
Keywords: DFT calculation, Intramolecular rearrangement pathway, Quantum efficiency, Rhodiumpyrazolildicarbonyl, Si-H bond activation

Abstract

The photoreactivity of hydrotris-(3,5-dimethylpyrazolyl)boratedicarbonylrhodium(I) or HB(Pz*)3Rh(CO)2 complex has been studied at room-temperature n-pentane solution in the presence of 0.05 M Et3SiH (Et = C2H5). The IR spectra show that the decline of νCO parent complex at 1980 and 2054 cm-1 is followed by growing bands at 2029 and 2020 cm-1. In light of the photolysis of the parent complex in neat n-pentane solution the feature at 2020 cm-1 is tentatively assigned to the νCO band of the Si-H bond activation product. Upon standing in the dark, the 2020 cm-1 increases slightly in contrast with the 2029 cm-1 peak which decreases over time. These observations raise question whether the intensity increase of the 2020 cm-1 peak occurs unimolecularly resulting from the intramolecular rearrangement of the C-H bond activation of Et3SiH or bimolecularly as a result of the elimination of the C-H bond activation of the solvent and subsequent re-addition of the Si-H bond of the Et3SiH ligand. To gain more insight to reaction dynamics of the Si-H bond activation, the experimental results are compared to the photolysis of the parent complex in neat Et3SiH. The quantum efficiency (ϕSi-H) of this photoreaction yields a low value of 0.16. The results indicate that the Si-H bond activation is facilitated by intramolecular rearrangement mode. In addition, a theoretical study was conducted using density functional study at B3LYP/LanL2DZ level of theory, and the findings implicate that the final complex product was produced by the Si-H bond activation of Et3SiH.

Downloads

Download data is not yet available.

References

H. Yang, K. T. Kotz, M. C. Asplund, M. J. Wilkens, and C. B. Harris, Ultrafast Infrared Studies of Bond Activation in Organometallic Complexes, Acc. Chem. Res., 1999, 32, 551-560, DOI: https://doi.org/10.1021/ar970133y.

M. S. Wrighton, and M. A. Schroeder, Chromium Carbonyl Photocatalyzed 1,4-Hydrosilation of 1,3-Dienes. Synthesis of Allylsilanes, J. Am. Chem. Soc., 1974, 96, 6235-6237, DOI: https://doi.org/10.1021/ja00826a075.

A. A. Purwoko, and A. J. Lees, Photochemistry and C-H Bond Activation Reactivity of (HBPz*3)Rh(CO)2 (Pz* = 3,5-Dimethylpyrazolyl) in Hydrocarbon Solution, Inorg. Chem., 1995, 34, 424-425, DOI: https://doi.org/10.1021/ic00106a002.

A. A. Purwoko, and A. J. Lees, Photochemical C−H Bond Activation Reactivity of (HBPz‘3)Rh(CO)2 (Pz‘ = 3,5-Dimethylpyrazolyl) in Alkane Solutions, Inorg. Chem., 1996,35, 675-682, DOI: https://doi.org/10.1021/ic951199x.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, Ultrafast UV Pump/IR Probe Studies of C−H Activation in Linear, Cyclic, and Aryl Hydrocarbons, J. Am. Chem. Soc., 2002, 124, 10605-10612, DOI: https://doi.org/10.1021/ja020418s.

H. Yang, K. T. Kotz, M. C. Asplund, and C. B. Harris, Femtosecond Infrared Studies of Silane Silicon−Hydrogen Bond Activation, J. Am. Chem. Soc., 1997, 119, 9564-9565, DOI: https://doi.org/10.1021/ja9716362.

H. Yang, M. C. Asplund, K. T. Kotz, M. J. Wilkens, H. Frei, and C. B. Harris, Reaction Mechanism of Silicon−Hydrogen Bond Activation Studied Using Femtosecond to Nanosecond IR Spectroscopy and Ab Initio Methods, J. Am. Chem. Soc., 1998, 120, 10154-10165, DOI: https://doi.org/10.1021/ja980692f.

Z. F. Zang, and M. D. Su, The Mechanistic Investigations of Photochemical Carbonyl Elimination and Oxidative addition Reactions of (η5-C5H5)M(CO)3, (M = Mn and Re) Complexes, RSC Adv., 2018, 8, 10987-10998, DOI: https://doi.org/10.1039/C8RA01118D.

F. L. Taw, R. G. Bergman, and M. Brookhart, Silicon−Hydrogen Bond Activation and Formation of Silane Complexes Using a Cationic Rhodium(III) Complex, Organomet., 2004, 23, 886-890, DOI: https://doi.org/10.1021/om0341303.

P. T. Snee, C. K. Payne, K. T. Kotz, H. Yang, and C. B. Harris, Triplet Organometallic Reactivity under Ambient Conditions: An Ultrafast UV Pump/IR Probe Study, J. Am. Chem. Soc., 2001, 123, 2255-2264, DOI: https://doi.org/10.1021/ja002350r.

J. P. Lomont, S. C. Nguyen, J. P. Schlegel, M. C. Zoerb, A. D. Hill, and C. B. Harris, Ultrafast Observation of a Solvent Dependent Spin State Equilibrium in CpCo(CO), J. Am. Chem. Soc., 2012, 134, 3120-3126, DOI: https://doi.org/10.1021/ja2098468.

P. T. Snee, H. Yang, K. T. Kotz, C. Payne, andC. B. Harris, Ultrafast Infrared Studies of the Reaction Mechanism of Silicon−Hydrogen Bond Activation by η5-CpV(CO)4, J. Phys. Chem. A, 1999, 103, 10426-10432, DOI: https://doi.org/10.1021/jp991964j.

P. T. Snee, J. Shanoski, and C. B. Harris,Mechanism of Ligand Exchange Studied Using Transition Path Sampling, J. Am. Chem. Soc., 2005, 127, 1286-1290, DOI: https://doi.org/10.1021/ja044807t.

K. T. Kotz, H. Yang, P. T. Snee, C. Payne, and C. B. Harris, Femtosecond Infrared Studies of Ligand Rearrangement Reactions: Silyl Hydride Products from Group 6 Carbonyls, J. Organomet. Chem., 2000, 596, 183-192, DOI: https://doi.org/10.1016/S0022-328X(99)00676-2.

G. Castro, and F. Colmenares, Using a Non-spin Flip Model to Rationalize the Irregular Patterns Observed in the Activation of the C–H and Si–H Bonds of Small Molecules by CpMCO (M = Co, Rh) Complexes, Phys. Chem. Chem. Phys., 2017, 19, 25115-25121, DOI: https://doi.org/10.1039/C7CP04767C.

R. Walsh, Bond Dissociation Energy Values in Silicon-containing Compounds and Some of their Implications, Acc. Chem. Res., 1981, 14, 246-252, DOI: https://doi.org/10.1021/ar00068a004.

R. Damrauer, S. R. Kass, and C. H. DePuy, Gas-phase Acidities of Methylsilanes: Carbon-hydrogen versus Silicon-hydrogen, Organomet., 1988, 7, 637-640, DOI: https://doi.org/10.1021/om00093a011.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci,C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. R. Komaromi, R. Gomperts, L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. P. Challacombe, M. W. Gill, B. Johnson, W. Chen, M. W.Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 09; Gaussian, Inc. Wallingford, CT, 2009.

A. A. Purwoko, and S. Hadisaputra, Experimental and Theoretical Study of the Substituted (Η6-Arene) Cr(CO)3 Complexes, Orient. J. Chem., 2017, 33(2), 717-724, DOI: https://doi.org/10.13005/ojc/330218.

A. A. Purwoko, V. R. Setiawati, and S. Hadisaputra, Metal-pigment Complex Derived from Natural Dye of Anthocyanin: A Potential Candidate for DSSC Photosensitizer, IOP Conf. Series Mater. Sci. Eng., 2019, 509(1), 012130, DOI: https://doi.org/10.1088/1757-899X/509/1/012130.

Comparison of energy stability among dicarbonyl parent complex, C-H bond activation of ethyl moieties, and Si-H bond activation of triethylsilane. The optimized structure clearly shows that the Si-H bond activation has the lowest energy (thermodynamically the most stable of the final product). The later is believed to be coming from the more kinetically accessible C-H bond activation of ethyl moieties of triethylsilane, which has higher energy than the corresponding Si-H bond activation product. Clearly, it shows that the intramolecular rearrangement of the C-H bond activation leading to the Si-H bond activation is the mode of reaction mechanism.
Published
2019-12-30
How to Cite
Abhi Purwoko, A., Hadisaputra, S., & Less, A. J. (2019). Experimental and Theoretical Study of the Silicon-Hydrogen Bond Activation by Rhodium Dicarbonyl Complex in Solution. Journal of the Indonesian Chemical Society, 2(2), 121. https://doi.org/10.34311/jics.2019.02.2.121