ZnO-SiO2 and Zn2SiO4 Synthesis Utilizing Oil Palm Leaves for Degradation of Methylene Blue Dye in Aqueous Solution
Abstract
A new approach was developed for the green synthesis of ZnO-SiO2 composite and Zn2SiO4 using zinc nitrate and sustainable silica precursor, oil palm (Elaeis guineensis) leaves (OPL). The products were synthesized at two different reaction temperatures through calcination in an open-air furnace at 500 and 1000 °C, respectively, and further identified with an X-ray diffractometry (XRD) analysis. The composite indicated by the presence of peaks at 2θ = 31.7°, 34.4°, 36.3°, 47.6°, 56.6°, and 62.9°, corresponds to ZnO and also revealed amorphous SiO2 at 2θ = 21°. Conversely, Zn2SiO4 was acknowledged at 2θ 25.6°, 31.50°, 34.0°, 39.5°, 48.9°, 56.5° and 65.6°, with crystalline silica at 2θ = 21.9°. The results showed the morphology of both products exhibited similar agglomeration based on scanning electron microscopy (SEM) analysis. Both products (ZnO-SiO2 composite and Zn2SiO4) possessed the capacity to degrade methylene blue (MB) under sunlight irradiation with efficiency of 85.9% and 69.3%, respectively.
Downloads
References
A. Subramaniyan, V. Visweswaran, C. S. Kumar, and T. Sornakumar, Preparation and Characterisation of ZnO - SiO2 and Bi2O3 – CuO Nanocomposites, Nanochem. Res., 2018, 3(1), 79–84, DOI: https://dx.doi.org/10.22036/ncr.2018.01.008.
R. Bharati, and S. Suresh, Synthesis of Green ZnO/SiO2 Nanocatalyst and its Application to Reduce Acenaphthylene from Refinery Waste Water, Biosc. Biotech. Res. Comm., 2016, 9(4), 769–775, DOI: https://dx.doi.org/10.21786/bbrc/9.4/28.
R. Bharati, and S. Suresh, Biosynthesis of ZnO/SiO2 Nanocatalyst with Palash Leaves’ Powder for Treatment of Petroleum Refinery Effluent, Resource-Efficient Technol., 2016, 3(4), 528–541, DOI: https://dx.doi.org/10.1016/j.reffit.2017.08.004.
V. L. Chandraboss, B. Karthikeyan, J. Kamalakkannan, S. Prabha, and S. Senthilvelan, Sol-Gel Synthesis of TiO2/SiO2 and ZnO/SiO2 Composite Films and Evaluation of their Photocatalytic Activity towards Methyl Green, J. Nanopart., 2013, 507161, DOI: https://dx.doi.org/10.1155/2013/507161.
H.-L. Xia, and F.-Q. Tang, Surface Synthesis of Zinc Oxide Nanoparticles on Silica Spheres: Preparation and Characterization, J. Phys. Chem. B, 2003, 107, 9175–9178, DOI: https://dx.doi.org/10.1021/jp0261511.
H. He, Y. Wang, and Y. Zou, Photoluminescence Property of ZnO–SiO2 Composites Synthesized by Sol–Gel Method, J. Phys. D: Appl. Phys., 2003, 36, 2972–2975, DOI: https://dx.doi.org/10.1088/0022-3727/36/23/017.
A. C. Grigorie, C. Muntean, T. Vlase, C. Locovei, and M. Stefanescu, ZnO-SiO2 based Nanocomposites Prepared by a Modified Sol-Gel Method, Mater. Chem. Phys., 2017, 186 (15) 399–406, DOI: https://dx.doi.org/10.1016/j.matchemphys.2016.11.011.
Z. Qiao, T. Yan, X. Zhang, C. Zhu, W. Li, and B. Huang, Low-Temperature Hydrothermal Synthesis of Zn2SiO4 Nanostructures and the Novel Photocatalytic Application in Wastewater Treatment, Catal. Comm., 2018, 106, 78–81, DOI: https://dx.doi.org/10.1016/j.catcom.2017.12.021.
S. Zhang, M. Lu, Y. Li, F. Sun, J. Yang, and S. Wang, Synthesis and Electrochemical Properties of Zn2SiO4 Nano/Mesorods, Mater. Lett., 2013, 100, 89–92, DOI: https://dx.doi.org/10.1016/j.matlet.2013.03.021.
S. Zhang, L. Rena, and S. Peng, Zn2SiO4 Urchin-like Microspheres: Controlled Synthesis and Application in Lithium-ion Batteries, Cryst. Eng. Comm., 2014, 16, 6195–6202, DOI: https://dx.doi.org/10.1039/C4CE00479E.
S. Zhang, H. Kang, and Y. Gao, Synthesis and Formation Mechanism of Zn2SiO4 Nanorods, Micro & Nano Lett., 2014, 9(11), 812–816, DOI: https://dx.doi.org/10.1049/mnl.2014.0250.
S. Zhang, L.-L. Hou, M. Hou, and H. Liang, Hydrothermal Synthesis of Spindle-like Zn2SiO4 Nanoparticles and its Application in Lithium-ion Battery, Mater. Lett., 2015, 156, 82–85, DOI: https://dx.doi.org/10.1016/j.matlet.2015.05.004.
A. Majumdar, and D. Ganguli, Solid State Synthesis of Willemite, Zn2SiO4: Role of Precursors, Trans. Indian Ceramic Soc., 1991, 50(4), 93–97, DOI: https://dx.doi.org/10.1080/0371750X.1991.10804499.
K. R. Kandula, A. S. Sarkar, and B. N. S. Bhaktha, Sol-gel Fabrication and Characterization of ZnO and Zn2SiO4 Nanoparticles Embedded Silica Glass-Ceramic Waveguides, Opt. Mater. Express, 2013, 3(12), 2078–2085. DOI: https://dx.doi.org/10.1364/OME.3.002078.
S. Tripathi, R. Bose, A. Roy, S. Nair, and N. Ravishankar, Synthesis of Hollow Nanotubes of Zn2SiO4 or SiO2: Mechanistic Understanding and Uranium Adsorption Behavior, ACS Appl. Mater. Interfaces, 2015, 7(48), 26430–26436, DOI: https://dx.doi.org/10.1021/acsami.5b09805.
E. Onoja, N. Attan, S. Chandren, F. I. A. Razak, A. S. A. Keyon, N. A. Mahat, and R. A. Wahab, Insights into the Physicochemical Properties of the Malaysian Oil Palm Leaves as an Alternative Source of Industrial Materials and Bioenergy, Malay. J. Fund. App. Sci., 2017,13(4), 623–631, DOI: https://dx.doi.org/10.11113/mjfas.v0n0.681.
E. Onoja, S. Chandren, F. Ilyana, A. Razak, and R. A. Wahab, Extraction of Nanosilica from Oil Palm Leaves and Its Application as Support for Lipase Immobilization, J. Biotech., 2018, 283(10), 81–96, DOI: https://dx.doi.org/10.1016/j.jbiotec.2018.07.036.
C. Cannas, M. Mainas, A. Musinu, and G. Piccaluga, ZnO/SiO2 Nanocomposites Obtained by Impregnation of Mesoporous Silica, Composites Sci. Tech., 2003, 63, 1187–1191, DOI: https://dx.doi.org/10.1016/S0266-3538(03)00040-X.
X. Shen, Y. Shi, H. Shao, Y. Liu, and Y. Zhai, Synthesis and Photocatalytic Degradation Ability Evaluation for Rhodamine B of ZnO@SiO2 Composite with Fower-like Structure, Water Sci. Tech., 2019, 80(10), 1986–1955. DOI: https://dx.doi.org/10.2166/wst.2020.020.
E. G. Pantohan, R. T. Candidato Jr, and R. M. Vequizo, Surface Characteristics and Structural Properties of Sol-Gel Prepared ZnO-SiO2 Nanocomposite Powders, IOP Conf. Sers. Mater. Sci. Eng., 2015, 79, 012024, DOI: https://dx.doi.org/10.1088/1757-899X/79/1/012024.
V. Sivakumar, A.Lakshmanan, S. Kalpana, R. S. Rani, R. S. Kumar, and M. T. Jose, Low-Temperature Synthesis of Zn2SiO4:Mn Green Photoluminescence Phosphor, J. Lumin., 2012, 132, 1917–1920, DOI: https://dx.doi.org/10.1016/j.jlumin.2012.03.007.
S. Tripathi, R. Bose, A. Roy, S. Nair, and N. Ravishankar, Synthesis of Hollow Nanotubes of Zn2SiO4 or SiO2: Mechanistic Understanding and Uranium Adsorption Behavior, ACS Appl. Mater. Inter., 2015, 7(48) 26430–26436, DOI: https://dx.doi.org/10.1021/acsami.5b09805.
E. A. G. E. Ali, K. A. Matori, E. Saion, S. H. A. Aziz, M. H. M. Zaid, and I. M. Alibe, Structural and Optical Properties of Heat Treated Zn2SiO4 Composite Prepared by Impregnation of ZnO on SiO2 Amorphous Nanoparticles, ASM Sci. J., 2018, 1, 75–85.
R. Stanley, J. A. Jebasingh, and S. M. Vidyavathy, Enhanced Sunlight Photocatalytic Degradation of Methylene Blue by Rod-Like ZnO-SiO2 nanocomposite, Optik, 2019, 180, 134–143, DOI: https://dx.doi.org/10.1016/j.ijleo.2018.11.084.
R. D. C. Soltani , G. S. Khoramabadi , H. Godini, and Z. Noorimotlagh, The Application of ZnO/SiO2 Nanocomposite for the Photocatalytic Degradation of a Textile Dye in Aqueous Solutions in Comparison with Pure ZnO Nanoparticles, Desalin. Water Treat., 2015, 56(9) 2551–2558, DOI: https://dx.doi.org/10.1080/19443994.2014.964781.
A. M. Ali, A. A. Ismail, R. Najmy, and A. Al-Hajry, Preparation and Characterization of ZnO–SiO2 Thin films as Highly Efficient Photocatalyst, J. Photochem. Photobiol. A Chem., 2014, 275, 37–46. DOI: https://dx.doi.org/10.1080/19443994.2014.964781.
Z. Qiao, T. Yan, X. Zhang, C. Zhu, W. Li, and B. Huang, Low-Temperature Hydrothermal Synthesis of Zn2SiO4 Nanostructures and the Novel Photocatalytic Application in Waste Water Treatment, Catal. Comm., 2018, 106, 78–81. DOI: https://dx.doi.org/10.1016/j.catcom.2017.12.021.
X. Luo, S. Zhang, and X. Lin, New Insights on Degradation of Methylene Blue using Thermocatalytic Reactions Catalyzed by Low-temperature Excitation, J. Hazardous Mater., 2013, 260, 112–121, DOI: https://dx.doi.org/10.1016/j.jhazmat.2013.05.005.
Y. Zhang, M. Xie, V. Adamaki, H. Khanbareh, and C. R. Bowen, Control of Electro-chemical Processes using Energy Harvesting Materials and Devices, Chem. Soc. Rev., 2017, 46, 7757–7786 DOI: https://dx.doi.org/10.1039/c7cs00387k.
M.-K. Lo, S.-Y. Lee, and K.-S. Chang, Study of ZnSnO3-nanowire Piezophotocatalyst Using Two-step Hydrothermal Synthesis, J. Phys. Chem. C., 2015, 119(9), 5218–5224, DOI: https://dx.doi.org/10.1021/acs.jpcc.5b00282.
J. J. Samuel, and F. K. Yam, Photocatalytic Degradation of Methylene Blue under Visible Light by Dye Sensitized Titania, Mater. Res. Express, 2020, 7, 015051, DOI: https://dx.doi.org/10.1088/2053-1591/ab6409.
M. Masjedi-Arani, and M. Salavati-Niasari, A Simple Sonochemical Approach for Synthesis And Characterization of Zn2SiO4 Nanostructures, Ultrason Sonochem, 2016, 29, 226–235, DOI: https://dx.doi.org/10.1016/j.ultsonch.2015.09.020.
P. K. Labhane, G. H. Sonawane, and S. H. Sonawane, Influence of Rare-earth Metal on the Zinc Oxide Nanostructures: Application in the Photocatalytic Degradation of Methylene Blue and p-Nitrophenol, Green Process Synth., 2018, 7, 360–371, DOI: https://dx.doi.org/10.1515/gps-2017-0006.

Copyright (c) 2020 Salprima Yudha S., Prissana Robkhob, Tanawat Imboon, Aswin Falahudin, Asdim, Sirikanjana Thongmee

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The manuscript will be made open access under the term of the Creative-Commons Attribution-NonCommercial-NoDerivatives License which permits use, distribution and reproduction in any medium, provided that the contribution is properly cited, the use is non-commercial and no modifications or adaptations are made.