Cobalt(II) Metal-organic Framework as Scintillating Material

  • Idongesit Justina Mbonu Department of Chemistry, Federal University of Petroleum Resources, Nigeria
  • Charles Chisom Mbonu Department of Physics, University of Uyo, Nigeria
Keywords: Cobalt (II), Metal-organic framework, Scintillator

Abstract

Novel cobalt(II) metal-organic framework was grown by the reaction of a methanol solution of 8-hydroxyquinoline and benzoic acid with aqueous solution of cobalt(II) chloride hexahydrate using slow solvent evaporation. The X-ray luminescence of the synthesized compound showed vibronic peaks: one with λmax at 489 nm and shoulders at 424 and 531 nm, respectively, which compare favorably with best  organic scintillators such as anthracene –447 nm and stilbene –410 nm currently in application.  The elemental analysis of the metal complex suggests a metal to ligands ratio of 1:1:1. Conductance measurement shows a nonelectrolytic nature of the synthesized compound. The SEM studies give the surface morphology of the complex. The observed emission bands with different dynamics in response to temperature change suggest that the Co-MOF exhibits scintillation properties. Electronic spectrum and magnetic moment studies were used to determine the geometry of the Co-MOF molecule. Thermal analysis data reported displayed the extent of stability of the Co-MOF compound. PXRD data revealed the nanocrystalline nature of the complex. Energy resolution peak observed at 2535 KeV, suggest the synthesized compound can be used as a scintillator.

Downloads

Download data is not yet available.

References

A. Yoshikawaa, V. Chania, and M. Niklc, Czochralski Growth and Properties of Scintillating Crystals, Acta Phys. Pol. A, 2013, 124, 250–264.

C. Dujardin, E. Auffray, G. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasilev, A. Yoshikawa, and R.Y. Zhu, Need, Trends, and Advance in InorganicScintillators, IEEE Trans. Nucl. Sci., 2018, 65(8), 1–21, DOI: https://dx.doi.org/10.1109/TNS.2018.2840160.

N. Srinivasan, M. Partha, and S. Debajit, The Relevanceof Metal-OrganicFrameworks (MOFs) in Inorganic Materials Chemistry, J. Chem. Sci., 2011, 124(2) 339–353, DOI: https://dx.doi.org/10.1007/s12039-012-0239-z.

M. J. Cieslak, K. A. A. Gamage, and R. Glover, Critical Review of Scintillating Crystals for Neutron Detection, Crystals, 2019, 9(9), 480, DOI: https://dx.doi.org/10.3390/cryst9090480.

F. P. Doty, P. L. Feng, J. Grossman, and M. D. Allendorf, Structural Origins of Scintillation: Metal-Organic Frameworks as a Nanolaboratory, Technical Report Prepared by Sandia National Laboratories, 2016.

M. Biplab, S. Shweta, and K. G. Sujit, Guest Driven Structural Transformation Studies of a Luminescent Metal-organic Framework, J. Chem. Sci., 2014, 126(5), 1417–1422, DOI: https://dx.doi.org/10.1007/s12039-014-0704-y.

N. Srinivasan, M. Partha, and S. Debajit, The Relevanceof Metal-OrganicFrameworks (MOFs) in Inorganic Materials Chemistry, J. Chem. Sci., 2012, 124(2), 339–353, DOI: https://dx.doi.org/10.1007/s12039-012-0239-z.

H. Moqing, Design, Synthesis, and Applications of Metal-Organic Frameworks, Department of Chemistry and Biochemistry,Worcester Polytechnic Institute, 2011.

T. F. Baumann, Metal-Organic Frameworks: Literature Survey and Recommendation of Potential Sorbent Materials, Lawrence Livermore National Laboratory, 2010.

V. B. Mykhaylyk, A. Wagner, and H. Kraus, Non-contact Luminescence Lifetime Cryothermometry for Macromolecular Crystallography, J. Synchrotron Rad., 2017, 24, 636–645, DOI: https://dx.doi.org/10.1107/S1600577517003484.

F. P. Doty, P. L. Feng, A. P. Greaney, J. Grossman, and M. D. Allendorf. Structural Origins of Scintillation: Metal-Organic Framework as a Nanolaboratory, Technical Report prepared by Sandia National Laboratories, 2016, 1-26.

I. J. Mbonu, Determination of Ni(II) Crystal Structure by Powder X-ray Diffraction, Scientia Africana, 2015, 14(1), 156–164.

R. Haddad, E. Yousif, and A. Ahmed, Synthesis and Characterization of Transition Metal Complexesof 4-Amino-5-pyridyl-4H-1,2,4-triazole-3-thiol, SpringerPlus, 2013, 2(510), 1–6, DOI: https://dx.doi.org/10.1186/2193-1801-2-510.

A. M. Paca, and P.A. Alibade, Synthesis, Optical, and Structural Studies of Iron Sulphide Nanoparticles and Iron Sulphide Hydroxyethyl Cellulose Nanocomposites from Bis-(Dithiocarbamato)Iron(II) Single-Source Precursors, Nanomaterials, 2018, 8(4), 187, DOI: https://dx.doi.org/10.3390/nano8040187.

H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, and J. J. Vittal, Multiphoton Harvesting Metal-organic Frameworks, Nat. Commun., 2015, 6, 7954, DOI: https://dx.doi.org/10.1038/ncomms8954.

S. Bhattacharya, U. Sanyal, and S. Natarajan, Crystal Growth Description, 2011,11, 735.

S. Casalini, F. Leonard, C. A. Bortolotti, A. Peramolla, O. H. Omar, L. Paltrinieri, C. Albonett, G. M. Farinola, and F. Biscarini, Mono/bidentae Thiol Oligoarylene-based Self-assembled Monolayers (SAMs) for Interface Engineering, J. Mater. Chem., 2012, 22, 12155–12163, DOI: https://dx.doi.org/10.1039/c2jm30838j.

K. Saugata, J. Atanu, D. Kinsuk, R. Sangita, C. Sudipta, A.G. James, L.R. Arnold, and K. K. Susanta, Synthesis, Crystal Structure, Spectroscopic and Photoluminescence Studies of Manganese(II), Cobalt(II), Cadmium(II), zinc(II) and Copper(II) Complexes with a Pyrazole Derived Schiff Base Ligand, Polyhedron, 2011, 30, 2801–280, DOI: https://dx.doi.org/10.1016/j.poly.2011.08.018.

Y. H. Zhou, and Y. P. Tian, Synthesis, Crystal Structure, and Photoluminescent, Property ofCadmium (II) Metal-organic Framework with Mixed Carboxylate and Bis(imidazole) Ligand, B. Korean Chem. Soc., 2013, 34(9), 2800–2802, DOI: https://dx.doi.org/10.5012/bkcs.2013.34.9.2800.

J. Shang and X. Gao, Nanoparticle Counting: Towards Accurate Determination of the Molar Concentration, Chem. Soc. Rev., 2014, 43(21), 7267–7278, DOI: https://dx.doi.org/10.1039/c4cs00128a.

P. Hirschle, B. T. Prei, F. Auras, A. Pick, J. Volkner, D. Valdeperez, G. Witte, W. J. Parak, J. O. Radler, and S. I. Wuttke, Exploration of MOF Nanoparticle Sizes using Various Physical Characterization Methods-is What You Measure What You Get?, CrystEngComm, 2016, 8, 4359–4368, DOI: https://dx.doi.org/10.1039/C6CE00198J.

K. K. Norrfors, M. Bouby,S . Heck, N. Finck, R. Marsac, T. Schafer, H. Geckeis, and S. Wold, Montmorillonite Colloids: Characterization and Stability of Dispersions with Different Size Fractions, Appl. Clay Sci., 2015, 114, 179–189, DOI: https://dx.doi.org/10.1016/j.clay.2015.05.028.

S. Sahoo, C. K. Chakraborti,S. C. Mishra, and U.N. Nanda, Scanning Electron Microscopy as an Analytical Tool for Particle Size Distribution and Aspect Ratio Analysis of Ciprofloxacin Mucoadhesive Polymeric Suspension, IJRRAS, 2011, 6(1) , 94–100.

R. R. R. Marin,F. Babick, L. Gottlieb-Georg, M. Wiemann, and M. Stintz, Effect of Sample Preparation on Particle Size Distributions of Different Types of Silica in Suspensions. Nanomaterials, 2018, 8(7), 454–471, DOI: https://dx.doi.org/10.3390/nano8070454.

P. Kanchana, V. Bhuvaneswari, and A. Sangeedha, Synthesis and Characterization of Mixed Ligand Complexes of Transition metals with Nicotinic Acid and Isonicotinic Acid with Hydrazine, Int. J. Chem. Appl., 2014, 6(2), 121–131.

K. I. Ramachandran, G. Deepa, and K. Namboori, Computational Chemistry and Molecular Modeling: Principles and Applications, 2008, 1–113, Springer.

I. Ahemen, A. N. Amah, B. E. AttahDaniel, and A.Y. Fasasi, Spherical Nanoparticles of Eu3+-doped ZnS Semiconductor Synthesized from ZnO NanorodsPrecursor, Nanosci. Nanotechnol., 2014, 4(1), 2163–2588, DOI: https://dx.doi.org/10.5923/j.nn.20140401.02.

M. Moszynski, Energy Resolution and Non-proportionality of Scintillation Detectors-New Observations, Radiat. Meas., 2010, 45(3), 372–376, DOI: https://dx.doi.org/10.1016/j.radmeas.2009.10.012.

M.Moszynski, A.Syntfeld-Kazuch, L. Swiderski, M. Grodzicka, J. Iwanowska, P. Sibczynski, and T. Szczesniak, The Energy Resolution of Scintillation Detectors, Accelerators, Spectrometers, Detectors, and Associated Equipment, Nucl. Instrum. Meth. Phys. Res. A, 2016, 805, 25–35, DOI: https://dx.doi.org/10.1016/j.nima.2015.07.059.

B. Jankovic, M. Marinovic-Cincovic, and M. Dramicanin, Kinetic Study of the Isothermal Crystallization Process of Gd2Ti2O7 Precursor’s Powder Prepared through the Pechini Synthetic Approach, J. Phys. Chem. Solids, 2015, 85, 160–172, DOI: https://dx.doi.org/10.1016/j.jpcs.2015.05.009.

T. Meiling, P. J. Cywinski, and I. Bald, White Carbon: Fluorescent Carbon Nanoparticles with Tunable QuantumYield in a Reproducible Green Synthesis, Sci. Rep., 2016, 6, 28557, DOI: https://dx.doi.org/10.1038/srep28557.

P. Jayaseelan, S. Prasad, S. Vedanayaki, and R. Rajave,Synthesis, Characterization, Anti-microbial, DNA Binding, and Cleavage Studies of SchiffBase Metal Complexes, Arab. J.Chem., 2016, 9(1), S668–S677, DOI: https://dx.doi.org/10.1016/j.arabjc.2011.07.029.

S. Sahoo, C. K. Chakraborti, S. C. Mishra, and U. N. Nanda, Scanning Electron as an Analytical Toolfor Particle Size Distribution and Aspect Ratio Analysis of Ciprofloxacin Mucoadhesive Polymeric Suspension, IJRRAS, 2011, 6(1), 94–100.

B. Babu, J. Chandrasekaran, R. Karunathan, and R. Sathyanarayananoorthj, Optical, Structural, Thermal, and Powder SHG Investigations on 5-Chlorosalicylaldehyde Single Crystals, Optik, 2015, 126(23), 3516–3521.

Three-dimensional optimization network of mononuclear Co-MOF incorporating 8-hydroxyquinoline and benzoic acid with high stability and strong luminescence emission was synthesized and characterized. (A) Showing an optimized  3D mode of Co-MOF (B) shows the ball and stick X-ray molecular structure of Co-MOF (C) Co-MOF molecule showing different binding sites with surface.
Published
2020-08-31
How to Cite
Mbonu, I. J., & Mbonu, C. C. (2020). Cobalt(II) Metal-organic Framework as Scintillating Material. Journal of the Indonesian Chemical Society, 3(2), 87. https://doi.org/10.34311/jics.2020.03.2.87