Origin and Maturity of Biomarker Aliphatic Hydrocarbon in Wondama Coal Indonesia

Keywords: Biomarker, Gas Chromatography-Mass Spectroscopy (GC-MS), Organic geochemistry, Wondama coal


Organic geochemical characterization of Wondama coal samples from the Lengguru Folding Belt has been carried out through the study of its aliphatic hydrocarbon biomarkers. This study is to determine the origin, depositional environment and maturity of coal which is useful for determining the use of coal as an energy source. Aliphatic hydrocarbon biomarkers were identified by using gas chromatography-mass spectroscopy methods which showed the presence of n-alkane homologs (n-C15 - n-C33), which was dominated by n-C31. This indicates that the organic material originates from Angiosperms of terrestrial higher plants. The ratio of pristane to phytane (Pr/Ph) with value of 3.74 indicates that the Wondama coal is buried in an oxic depositional environment. The Carbon Preference Index (CPI) value of 7.82 and the C31αβS/(S + R) ratio of 0.27 indicate low maturity of Wondama coal and is classified into a sub-bituminous coal ranks.


Download data is not yet available.


T. Suseno, Kontribusi Investasi Pertambangan Batubara terhadap Produk Domestik Regional Bruto Propinsi Papua Barat, J. Teknol. Mineral Batubara, 2013, 9, 118–134, DOI: https://dx.doi.org/10.30556/jtmb.Vol9.No3.2013.757.

H. E. Belkin, S. J. Tewalt, J. C. Hower, J. D. Stucker, and J. M. K. O’Keefe, Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi and Papua, Indonesia, Inter. J. Coal Geol., 2009, 77, 260–268, DOI: https://dx.doi.org/10.1016/j.coal.2008.08.001.

C. J. Pigram, A. B. Challinor, F. Hasibuan, E. Rusmana, and U. Hartono, Lithostratigraphy of the Misool Archipelago, Irian Jaya, Indonesia, Geologie en Mijnbouw, 1982, 61, 265–279.

S. Dai, A. Bechtel, C. F. Eble, R. M. Flores, D. French, I. T. Graham, M. M. Hood, J. C. Hower, V. A. Korasidis, T. A. Moore, W. Puttmann, Q. Wei, L. Zhao, and J. M. K. O’Keefe, Recognition of Peat Depositional Environments in Coal: A Review, Inter. J. Coal Geology, 2020, 219, 103383, DOI: https://dx.doi.org/10.1016/j.coal.2019.103383.

A. Bechtel, A. I. Karayigit, Y. Bulut, M. Mastalerz, and R. F. Sachsenhofer, Coal Characteristics and Biomarker Investigations of Dombayova Coals of Late Miocene–Pliocene Age (Afyonkarahisar-Turkey), Org. Geochem., 2016, 94, 52–67, DOI: https://dx.doi.org/10.1016/j.orggeochem.2015.12.008.

Y. Zetra, H. S. Kusuma, F. Riandra, I. B. Sosrowidjojo, and R. Y. P. Burhan, The Oxygenated Biomarker as an Indicator of Origin and Maturity of Miocene Brown Coal, Sangatta Coal Mines, East Kalimantan, Indones. J. Geosci., 2018, 5, 105–116, DOI: https://dx.doi.org/10.17014/ijog.5.2.107-116.

N. I. Ulfaniyah, and R. Y. P. Burhan, Karakterisasi Geokimia Organik Batubara Samarinda, Kalimantan Timur, J. Sains Terapan Kimia, 2014, 8, 57–68, DOI: https://dx.doi.org/10.20527/jstk.v8i2.2134.

B. R. T. Simoneit, D. R. Oros, L. Karkowsky, L. Szendera, J. Smolarek-Lach, M. Goryl, M. Bucha, and M. Rybicki, Terpenoid Biomarker of Ambers from Miocene Tropical Palaeoenvironments in Borneo and of their Potential Extant Plant Sources, Inter. J. Coal Geol., 2020, 221, 103430, DOI: https://dx.doi.org/10.1016/j.coal.2020.103430.

J. Speight, Handbook of Coal Analysis, Johm Wiley & Sons, Inc., New Jersey, 2005.

M. Billah, Peningkatan Kalor Batubara Peringkat Rendah dengan Menggunakan Minyak Tanah dan Minyak Residu, UPN Press, Surabaya, 2010.

H. Gan, H. Wang, J. Chen, X, Zhuang, H. Cao, and S. Jiang, Geochemical Characteristics of Jurassic Coal and its Palaeoenvironmental Implication in the Eastern Junggar Basin, China, J. Geochem. Expl., 2018, 188, 73–86, DOI: https://dx.doi.org/10/1016/j.gexplo.2018.01.010.

L. Jiang, and S. C. George, Biomarker Signatures of Upper Cretaceous Latrobe Group Hydrocarbon Source Rocks, Gippsland Basin, Australia: Distribution and Palaeoenvironment Significance of Aliphatic Hydrocarbons, Inter. J. Coal Geol., 2018, 196, 29–42, DOI: https://dx.doi.org/10.1016/j.coal.2018.06.025.

E. Darilmaz, Aliphatic Hydrocarbons in Coastal Sediments of the Northern Cyprus (eastern Mediterranean), Environ. Earth Sci., 2017, 76, 220, DOI: https://dx.doi.org/10.1007/s12665-017-6537-5.

W. Shanshan, L. Guijian, Y. Zijiao, and D. Chunnian, n-Alkanes in Sediments from the Yellow River Estuary, China: Occurrence, Sources and Historical Sedimentary Record, Ecotoxicol. Environ. Safety, 2019, 150, 199–206, DOI: https://dx.doi.org/10.1016/j.ecoenv.2017.12.016.

R. Fang, R. Littke, L. Zieger, A. Baniasad, M. Li, dan J. Schwarzbauer, Changes of Composition and Content of Tricyclic Terpane, Hopane, Sterane and Aromatic Biomarkers throughout the Oil Window: A Detailed Study on Maturity Parameters of Lower Toarcian Posidonia Shale of the Hils Syncline, N.W Germany, Org. Geochem., 2019, 138, 103928–103946, DOI: https://dx.doi.org/10.1016/j.orggeochem.2019.103928.

Z. Wang, S. A. Stout, and M. Fingas, Forensic Fingerprinting of Biomarkers for Oil Spill Characterization and Source Identification, Environ. Forens., 2006, 7, 105–146, DOI: https://dx.doi.org/10.1080/15275920600667104.

X. Y. Huang, D. Jiao, L. Q. Lu, S. C. Xie, J. H. Huang, Y. B. Wang, H. F. Yin, H. M. Wang, K. X. Zhang, and X. L. Lai, The Fluctuating Environment Associated with the Episodic Biotic Crisis during the Permo/Triassic Transition: Evidence from Microbial Biomarkers in Changxing, Zhejiang Province, Sci. China Ser. D, 2007, 50, 1052–1059, DOI: https://dx.doi.org/10.1007/s11430-007-0024-x.

R. F. Soares, R. Pereira, R. S. F. Silva, L. Mogollon, and D. A. Azevedo, Comprehensive Two-dimensional Gas Chromatography Coupled to Time of Flight Mass Spectrometry: New Biomarker Parameter Proposition for the Characterization of Biodegraded Oil, J. Braz. Chem. Soc., 2013, 24, 1570–1581, DOI: https://dx.doi.org/10.5935/0103-5053.20130198.

Y. Zetra, I. B. Sosrowidjojo, and R.Y.P. Burhan, Paleoenvironment of Brown Coal from Sangatta Coal Mines, East Borneo, Indonesia, J. Teknol., 2016, 78, 121–129, DOI: https://dx.doi.org/10.11113/jt.v78.9166.

M. F. Romero-Sarmiento, A. Riboulleau, M. Vecoli, F. Laggoun-Défarge, and G. J. M. Versteegh, Aliphatic and Aromatic Biomarkers from Carboniferous Coal Deposits at Dunbar (East Lothian, Scotland): Palaeobotanical and Palaeoenvironmental Significance, Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 309–326, DOI: https://dx.doi.org/10.1016/j.palaeo.2011.06.015.

M. J. Fabiańska, and D. Smołka-Danielowska, Biomarker Compound in Ash from Coal Combustion in Domestic Furnaces (Upper Silesia Coal Basin, Poland), Fuel, 2012, 102, 333–334, DOI: https://dx.doi.org/10.1016/j.fuel.2012.07.012.

M. J. Fabiańska, R. Stanislaw, S. R. Ćmiel, and M. Misz-Kennan, Biomarkers and Aromatic Hydrocarbons in Bituminous Coals of Upper Silesian Coal Basin: Example from 405 Coal Seam of the Zaleskie Beds (Poland), Inter. J. Coal Geol., 2013, 107, 96–111, DOI: https://dx.doi.org/10.1016/j.coal.2012.11.008.

A. Furmann, M. Mastalerz, S. C. Brassell, A. Schimmelmann, and F. Picardal, Extractability of Biomarkers from High- and Low-vitrinite Coals and its Effect on the Porosity of Coal, Inter. J. Coal Geol., 2013, 107, 141–151, DOI: https://dx.doi.org/10.1016/j.coal.2012.09.010.

A. Izart, I. Suarez-Ruiz, and J. Bailey, Paleoclimate Reconstruction from Petrography and Biomarker Geochemistry from Permian Humic Coals in Sydney Coal Basin (Australia), Inter. J. Coal Geol., 2015, 138, 145–157, DOI: https://dx.doi.org/10.1016/j.coal.2014.12.009.

J. H. Lu, X. Y. Wei, Y. H. Wang, T. M. Wang, J. Liu, D. D. Zhang, Z. M. Zong, F. Y. Ma, and J. M. Liu, Mass Spectrometric Analyses of Biomarkers and Oxygen-containing Species in Petroleum Ether Extractable Portions from Two Chinese Coals, Fuel, 2016, 173, 260–267, DOI: https://dx.doi.org/10.1016/j.fuel.2016.01.067.

N. D. Rodriguez, and R. P. Philp, Productivity and Paleoclimatic Controls on Source Rock Character in the Aman Trough, North Central Sumatra, Indonesia, Org. Geochem., 2012, 45, 18–28, DOI: https://dx.doi.org/10.1016/j.orggeochem.2012.01.004

Y. Qian, T. Zhang, Z. Wang, J. Tuo, M. Zhang, and Ch. Wu, Organic Geochemical Characteristics and Generating Potential of Source Rocks from the Lower-Middle Jurassic Coal-bearing Strata in the East Junggar Basin, NW China, Mar. Petrol. Geol., 2018, 93, 113–126, DOI: https://dx.doi.org/10.1016/j.marpetgeo.2018.02.036.

A. H. Widayat, B. Schootbrugge, W. Oschmann, K. Anggayana, and W. Puttmann, Climatic Control on Primary Productivity Changes during Development of the Late Eocene Kiliran Jao lake, Central Sumatra Basin, Indonesia, Intern. J. Coal Geol., 2016, 165, 133–141, DOI: https://dx.doi.org/10.1016/j.coal.2016.08.008.

K. J. Sefein, Th. X. Nguyen, and R. P. Philp, Organic Geochemical and Paleoenvironmental Characterization of the Brown Shale Formation, Kiliran sub-basin, Central Sumatra Basin, Org. Geochem., 2017, 112, 137–157, DOI: https://dx.doi.org/10.1016/j.orggeochem.2017.06.017.

R. J. Brito, Geological Characterization and Sequence Stratigraphic Framework of the Brown Shale, Central Sumatra Basin, Indonesia: Implications as an Unconventional Resource (Master’s Thesis), University of Oklahoma, 2015.

S. M. El-Sabagh, A. Y. El-Naggar, M. M. El Nady, I. A. Badr, M. A. Ebiad, and E. S. Abdullah, Fingerprinting of Biomarker Characteristics of Some Egyptian Crude Oils in Northern Western Desert as Evidence for Organic Matter Input and Maturity Level Assessment, Egyp. J. Petrol., 2018, 27, 201–208, DOI: https://dx.doi.org/10.1016/j.ejpe.2017.05.004.

A. Bechtel, I. Y. Chekryzhov, B. I. Pavlyutkin, V. P. Nechaev, Sh. Dai, S.V. Vysotskiy, T. A. Velivetskaya, and I. A. Tarasenko, Compositions of Lipids from Coal Deposits of the Far East: Realtions to Vegetation and Climate Change during the Cenozoic, Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109479, DOI: https://dx.doi.org/10.1016/j.palaeo.2019.109479.

J. H. Kim, D. H. Lee, S. H. Yoon, K. S. Jeong, B. Choi, and K. H. Shin, Contribution of Petroleum-derived Organic Carbon to Sedimentary Organic Carbon Pool in the Eastern Yellow Sea (the northwestern Pacific), Chemosphere, 2017, 168, 1389–1399, DOI: https://dx.doi.org/10.1016/0016-7037(61)90069-2.

M. M. El-Nady, N. S. Mohamed, and L. M. Sharaf, Geochemical and Biomarker Characteristics of Crude Oils and Source Rock Hydrocarbon Extracts: An Implication to their Correlation, Depositional Environment and Maturation in the Northern Western Desert, Egypt, Egyp. J. Petrol., 2016, 25, 263–268, DOI: https://dx.doi.org/10.1016/j.ejpe.2014.11.002.

C. S. Lane, Modern n-Alkane Abundances and Isotopic Composition of Vegetation in a Gymnosperm-dominated Ecosystem of the Southeastern U.S. Coastal, Org. Geochem., 2017, 105, 33–36, DOI: https://dx.doi.org/10.1016/j.orggeochem.2016.12.003.

D. B. Koralay, Palaeoenvironmental Significance of Biomarker and Stable Isotope (2H, 13C, 15N, 18O and 34S) Investigations on a Pliocene Coal-bearing Sequence (Denizli Basin, southwestern Turkey), J. African Earth Sci., 2020, DOI: https://dx.doi.org/10.1016/j.jafrearsci.2020.103948.

A. Tewari, S. Dutta, dan T. Sarkar, Biomarker Signatures of Permian Gondwana Coals from India and their Palaeobotanical Significance, Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468, 414–426, DOI: https://dx.doi.org/10.1016/jpalaeo.2016.12.014.

J. K. Volkman, Z. Zhang, X. Xie, J. Qin, and T. Borjigin, Biomarker Evidence for Botryococcus and a Methane Cycle in the Eocene Huadian Oil Shale, NE China, Org. Geochem., 2015, 78, 1109–1146, DOI: https://dx.doi.org/10.1016/j.orggeochem.2014.11.002.

M. H. Hakimi, W. H. Abdullah, O. S. Hersi, A. A. Lashin, M. M. El Alfy, Y. M. Makeen, M. M. Kinawi, and B. A. Hatem, Organic Geochemistry of the Early Cretaceous shales, Saar Formation in the East Shabwah Oil Fields, Onshore Masila Basin of Eastern Yemen, J. Petrol. Sci. Eng., 2019, 179, 394–409, DOI: https://dx.doi.org/10.1016/j.petrol.2019.04.032.

Y. Qi, Y. Yu, J. Tan, L. Bowen, C. Cai, K.Yu, H. Zhu, C. Huang, and W. Zhang, Organic Matter Provenance and Depositional Environment of Marine-to-continental Mudstones and Coals in Eastern Ordos Basin, China-Evidence from Molecular Geochemistry and Petrology, Inter. J. Coal Geol., 2020, 217, 103345, DOI: https://dx.doi.org/10.1016/j.coal.2019.103345.

S. Wang, Y. Tang, H. H. Schobert, Y. Jiang, and Z. Yang, Petrologic and Organic Geochemical Characteristics of Late Permian Bark Coal in Mingshan Coalmine, Southern China, Mar. Petrol. Geol., 2018, 93, 205–217, DOI: https://dx.doi.org/10.1016/j.marpetgeo.2018.03.014.

K. Shiojima, Y. Arai, K. Masuda, Y. Takase, T. Ageta and H. Ageta, Mass Spectra of Pentacyclic Triterpenoids, Chem. Pharm. Bull., 1992, 40(7), 1683–1690, DOI: https://dx.doi.org/10.1248/cpb.40.1683.

R. Y. P. Burhan, J. M. Trendel, P. Adam, P. Wehrung, P. Albrecht, and A. Nissenbaum, Fossil Bacterial Ecosystem at Methane Seep: Origin of Organic Matter from Be’eri Sulfur Deposit, Israel, Geochem. Cosmochim. Acta, 2002, 66, 4085–4101, DOI: https://dx.doi.org/10.1016/S0016-7037(02)00979-1.

A. J. Al-Khafaji, M. H. Hakimi, and A. A. Najaf, Organic Geochemistry Characterisation of Crude Oils from Mishrif Reservoir Rocks in Southern Mesopotamian Basin, South Iraq: Implication for Source Input and Palaeoenvironmental Conditions, Egyp. J. Petrol., 2018, 27, 117–130. DOI: https://dx.doi.org/10.1016/j.ejpe.2017.02.001.

The existence of long-chain n-alkanes indicates the source of coal organic compounds originated from terrestrial higher plants. Very low abundance of short and medium n-alkane chains indicates low contribution of bacteria, algae and plankton in the formation of coal organic compounds. The existence of n-alkane homologues with distributions such as those obtained in Wondama coal was also found in previous studies. In this study, the presence of pristane and phytane compounds with Pr/Ph = 3.75 in Wondama coal, indicates the depositional environment is oxidic, or tends to be oxidative.
How to Cite
Zetra, Y., Burhan, R. Y. P., Pratama, A. D., & Wahyudi, A. (2020). Origin and Maturity of Biomarker Aliphatic Hydrocarbon in Wondama Coal Indonesia. Journal of the Indonesian Chemical Society, 3(2), 107. https://doi.org/10.34311/jics.2020.03.2.107