Recent Advances on Plasmon-enhanced Titania Nanocatalysts for Photocatalytic Degradation of Organic Dyes

  • Munawar Khalil Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia https://orcid.org/0000-0002-7712-1738
  • Rendy Muhamad Iqbal Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Indonesia
  • Grandprix T.M. Kadja Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Indonesia https://orcid.org/0000-0003-0264-2739
  • Dede Djuhana Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
Keywords: Metal Nanoparticles, Photocatalyst, Photodegradation, Surface plasmon resonance, Titania

Abstract

In the past several years, solar-driven photocatalytic degradation of organic dyes has been considered as one of the most promising and effective ways to address water pollution issues. Nevertheless, the implementation of such technology for large scale industrial wastewater application is still hampered by the limitation in currently used photocatalysts. Recently, plasmon-enhanced titania-based nanocatalyst has emerged as one of the promising photocatalytic materials for solar-driven wastewater treatment due to its excellent activity and ability to absorb a large portion of solar radiation. Therefore, this review highlights recent progress on applying such material for the photodegradation of organic dyes. In this review, the focus is placed on several mechanisms on how the surface plasmon resonance (SPR) phenomenon could enhance the photocatalytic activity of semiconductors, such as TiO2. Furthermore, the performance of several types of plasmon-enhanced titania nanocatalyst with different kinds of metal plasmonic nanoparticles, i.e., Au-TiO2, Ag-TiO2, and Pd-TiO2, is also compared and comprehensively discussed. Finally, a particular emphasis is also given to highlight the nanocatalysts' kinetics in facilitating the photocatalytic degradation of different types of organic dyes.

Downloads

Download data is not yet available.

Author Biographies

Munawar Khalil, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia

Photo_Dr_Munawar_Khalil.jpg

Dr. Munawar Khalil is currently an assistant professor of inorganic chemistry at the Department of Chemistry, University of Indonesia. Dr. Khalil received his PhD in chemistry from the New Mexico Tech (NMT), USA in 2015. He obtained his BS in chemistry from IPB University in 2007 and master’s degree in chemical engineering from University of Malaya in 2011. His research is focused on the synthesis and characterization of advanced functional nanomaterials such as metal and metal oxides nanoparticles, bimetallic nanoparticles, hybrid nanoparticles, and semiconductor quantum dots with specific potential applications in catalysis, alternative energy, biomedical, electronics and sensing devices, oil and gas industry, and energy storage.

Rendy Muhamad Iqbal, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Indonesia

Photo_Rendy_Muhamad_Iqbal.jpg

Rendy Muhamad Iqbal received his B.Sc in Chemistry Department of Brawijaya University and his M.Sc in Chemistry Department of Institut Teknologi Sepuluh Nopember, Indonesia. Currently, he works as a junior lecturer in Chemistry Department, Faculty of Mathematics and Natural Sciences, University of Palangka Raya. His research focuses on development of inorganic membrane and advanced materials for sustainable energy and the environment.

Grandprix T.M. Kadja, Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Indonesia

Photo_Dr_Grandprix_Kadja.jpg

Dr. Grandprix T. M. Kadja is currently an assistant professor in the Division of Inorganic and Physical chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung. He received his BS in chemistry from Universitas Indonesia in 2013 while his Ph.D. in chemistry was obtained from Institut Teknologi Bandung in 2017. His research focuses on the synthesis and characterization of functionalized nanoporous materials and their applications in the emerging fields of catalysis, separation, energy, and environmental remediation.

Dede Djuhana, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia

Photo_Dr_Dede_Djuhana.jpg

Dede Djuhana, Ph.D. is currently an associate professor at the Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. He received his Ph.D. in 2010 from the Department of Physics, Chungbuk National University, Korea. His research focuses on modelling micromagnetic (domain wall dynamics) and optical (localized surface plasmon resonance).

References

M. Khalil, E. S. Anggraeni, T. A. Ivandini, and E. Budianto, Exposing TiO2 (001) Crystal Facet in Nano Au-TiO2 Heterostructures for Enhanced Photodegradation of Methylene Blue, Appl. Surf. Sci., 2019, 487, 1376-1384, DOI: https://dx.doi.org/10.1016/j.apsusc.2019.05.232.

C. H. Nguyen, C.-C. Fu, and R.-S. Juang, Degradation of Methylene Blue and Methyl Orange by Palladium-doped TiO2 Photocatalysis for Water Reuse: Efficiency and Degradation Pathways, J. Clean. Prod., 2018, 202, 413–427, DOI: https://dx.doi.org/10.1016/j.jclepro.2018.08.110.

H. Safardoust-Hojaghan, and M. Salavati-Niasari, Degradation of Methylene Blue as a Pollutant with N-doped Graphene Quantum Dot/titanium Dioxide Nanocomposite, J. Clean. Prod., 2017, 148, 31–36, DOI: https://dx.doi.org/10.1016/j.jclepro.2017.01.169.

P. S. Goh, and A. F. Ismail, A Review on Inorganic Membranes for Desalination and Wastewater Treatment, Desalination, 2018, 434, 60–80, DOI: https://dx.doi.org/10.1016/j.desal.2017.07.023.

Y. Hu, X. C. Wang, H. H. Ngo, Q. Sun, and Y. Yang, Anaerobic Dynamic Membrane Bioreactor (AnDMBR) for Wastewater Treatment: A Review, Bioresour. Technol., 2018, 247, 1107–1118, DOI: https://dx.doi.org/10.1016/j.biortech.2017.09.101.

H. Wu, J. Zhang, H. H. Ngo, W. Guo, Z. Hu, S. Liang, J. Fan, and H. Liu, A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment: Design and Operation, Bioresour. Technol., 2015, 175, 594–601, DOI: https://dx.doi.org/10.1016/j.biortech.2014.10.068.

A. Ayati, A. Ahmadpour, F. F. Bamoharram, B. Tanhaei, M. Mänttäri, and M. Sillanpää, A Review on Catalytic Applications of Au/TiO2 Nanoparticles in the Removal of Water Pollutant, Chemosphere, 2014, 107, 163–174, DOI: https://dx.doi.org/10.1016/j.chemosphere.2014.01.040.

U. G. Akpan, and B. H. Hameed, Parameters Affecting the Photocatalytic Degradation of Dyes using TiO2-based Photocatalysts: A Review, J. Hazar. Mater., 2009, 170, 520–509, DOI: https://dx.doi.org/10.1016/j.jhazmat.2009.05.039.

B. Bhanvase, T. Shende, and S. Sonawane, A Review on Graphene–TiO2 and Doped Graphene–TiO2 Nanocomposite Photocatalyst for Water and Wastewater Treatment, Environ. Technol. Rev., 2017, 6, 1–14, DOI: https://dx.doi.org/10.1080/21622515.2016.1264489.

X. Wang, M. Blackford, K. Prince, and R. A. Caruso, Preparation of Boron-doped Porous Titania Networks Containing Gold Nanoparticles with Enhanced Visible-light Photocatalytic Activity, ACS Appl. Mater. Interfaces, 2012, 4, 476–482, DOI: https://dx.doi.org/10.1021/am201695c.

X. Wang, and R. A. Caruso, Enhancing Photocatalytic Activity of Titania Materials by using Porous Structures and the Addition of Gold Nanoparticles, J. Mater. Chem., 2011, 21, 20–28, DOI: https://dx.doi.org/10.1039/C0JM02620D.

A. C. Pradhan, K. Parida, and B. Nanda, Enhanced Photocatalytic and Adsorptive Degradation of Organic Dyes by Mesoporous Cu/Al2O3–MCM-41: Intra-particle Mesoporosity, Electron Transfer and OH Radical Generation under Visible Light, Dalton Trans., 2011, 40, 7348–7356, DOI: https://dx.doi.org/10.1039/C1DT10363F.

Y. Tang, Z. Jiang, Q. Tay, J. Deng, Y. Lai, D. Gong, Z. Dong, and Z. Chen, Visible-light Plasmonic Photocatalyst Anchored on Titanate Nanotubes: A Novel Nanohybrid with Synergistic Effects of Adsorption and Degradation, RSC Adv., 2012, 2, 9406–9414, DOI: https://dx.doi.org/10.1039/C2RA21300A.

J. Li, J. P. McClure, R. Fu, R. Jiang, and D. Chu, Understanding Charge Transfer Dynamics in QDs-TiO2 Nanorod Array Photoanodes for Solar Fuel Generation, Appl. Surf. Sci., 2018, 429, 48–54, DOI: https://dx.doi.org/10.1016/j.apsusc.2017.06.090.

B. Ma, P.-Y. Guan, Q.-Y. Li, M. Zhang, and S.-Q. Zang, MOF-derived Flower-like MoS2@TiO2 Nanohybrids with Enhanced Activity for Hydrogen Evolution, ACS Appl. Mater. Interfaces., 2016, 8, 26794–26800, DOI: https://dx.doi.org/10.1021/acsami.6b08740.

O. Trejo, K. E. Roelofs, S. Xu, M. Logar, R. Sarangi, D. Nordlund, A. L. Dadlani, R. Kravec, N. P. Dasgupta, S. F. Bent, and F. B. Prinz,. Quantifying Geometric Strain at the PbS QD-TiO2 Anode Interface and Its Effect on Electronic Structures, Nano Lett., 2015, 15, 7829–7836, DOI: https://dx.doi.org/10.1021/acs.nanolett.5b02373.

N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, and Q.-H. Xu, Plasmon-enhanced Light Harvesting: Applications in Enhanced Photocatalysis, Photodynamic Therapy and Photovoltaics, RSC Adv., 2015, 5, 29076–29097, DOI: https://dx.doi.org/10.1039/C5RA01819F.

C.-H. Chou, and F.-C. Chen, Plasmonic Nanostructures for Light Trapping in Organic Photovoltaic Devices, Nanoscale, 2014, 6, 8444–8458, DOI: https://dx.doi.org/10.1039/C4NR02191F.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications, Chem. Rev., 2011, 111, 3669–3712, DOI: https://dx.doi.org/10.1021/cr100275d.

K.-H. Kim, A. Husakou, and J. Herrmann, Linear and Nonlinear Optical Characteristics of Composites Containing Metal Nanoparticles with Different Sizes and Shapes, Opt. Express, 2010, 18, 7488–7496, DOI: https://dx.doi.org/10.1364/OE.18.007488.

K. Kolwas, A. Derkachova, and M. Shopa, Size Characteristics of Surface Plasmons and their Manifestation in Scattering Properties of Metal Particles, J. Quant. Spectrosc. Radiat. Transf., 2009, 110, 1490–1501, DOI: https://dx.doi.org/10.1016/j.jqsrt.2009.03.020.

Y. Tian, and T. Tatsuma, Plasmon-induced Photoelectrochemistry at Metal Nanoparticles Supported on Nanoporous TiO2, Chem. Comm., 2004, 1810–1811, DOI: https://dx.doi.org/10.1039/B405061D.

Y. Tian, and T. Tatsuma, Mechanisms and Applications of Plasmon-induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles, J. Am. Chem. Soc., 2005, 127, 7632–7637, DOI: https://dx.doi.org/10.1021/ja042192u.

W. Hou, and S. B. Cronin, A Review of Surface Plasmon Resonance‐enhanced Photocatalysis, Adv. Funct. Mater., 2013, 23, 1612–1619, DOI: https://dx.doi.org/10.1002/adfm.201202148.

W.-T. Chen, Y.-J. Hsu, and P. V. Kamat, Realizing Visible Photoactivity of Metal Nanoparticles: Excited-State Behavior and Electron-Transfer Properties of Silver (Ag8) Clusters, J. Phys. Chem. Lett., 2012, 3, 2493–2499 DOI: https://dx.doi.org/10.1021/jz300940c.

M. S. Devadas, K. Kwak, J.-W. Park, J.-H. Choi, C.-H. Jun, E. Sinn, E. Ramakrishna, and D. Lee, Directional Electron Transfer in Chromophore-labeled Quantum-sized Au25 Clusters: Au25 as an Electron Donor, J. Phys. Chem. Lett., 2010, 1, 1497–1503, DOI: https://dx.doi.org/10.1021/jz100395p.

I. Díez, and R. H. Ras, Fluorescent Silver Nanoclusters, Nanoscale, 2011, 3, 1963–1970, DOI: https://dx.doi.org/10.1039/C1NR00006C.

J. Zheng, P. R. Nicovich, and R. M. Dickson, Highly Fluorescent Moble-metal Quantum Dots, Annu. Rev. Phys. Chem., 2007, 58, 409–431, DOI: https://dx.doi.org/10.1146/annurev.physchem.58.032806.104546.

S. Ghasemi, S. Hashemian, A. Alamolhoda, I. Gocheva, and S. R. Setayesh, Plasmon Enhanced Photocatalytic Activity of Au@TiO2-graphene Nanocomposite under Visible Light for Degradation of Pollutants, Mater. Res. Bull., 2017, 87, 40–47, DOI: https://dx.doi.org/10.1016/j.materresbull.2016.11.020.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-enhanced Raman Scattering and Surface-enhanced Infrared Absorption, ACS Nano, 2008, 2, 707–718, DOI: https://dx.doi.org/10.1021/nn800047e.

S. Zou, and G. C. Schatz, Silver Nanoparticle Array Structures that Produce Giant Enhancements in Electromagnetic Fields, Chem. Phys. Lett., 2005, 403, 62–67, DOI: https://dx.doi.org/10.1016/j.cplett.2004.12.107.

K. Kočí, K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, D. Plachá, A. Hospodková, and O. Šolcová, Effect of Silver Doping on the TiO2 for Photocatalytic Reduction of CO2, Appl. Catal. B Environ., 2010, 96, 239–244, DOI: https://dx.doi.org/10.1016/j.apcatb.2010.02.030.

A. Takai, and P. V. Kamat, Capture, Store, and Discharge. Shuttling Photogenerated Electrons Across TiO2–silver Interface, ACS Nano, 2011, 5, 7369–7376, DOI: https://dx.doi.org/10.1021/nn202294b.

P. V. Kamat, Photoinduced Transformations in Semiconductormetal Nanocomposite Assemblies, Pure Appl. Chem., 2002, 74, 1693–1706, DOI: https://dx.doi.org/10.1351/pac200274091693.

X. Zhang, Y. Zhu, X. Yang, S. Wang, J. Shen , B. Lin, and C. Li, Enhanced Visible Light Photocatalytic Activity of Interlayer-isolated Triplex Ag@SiO2@ TiO2 Core–shell Nanoparticles, Nanoscale, 2013, 5, 3359–3366, DOI: https://dx.doi.org/10.1039/C3NR00044C.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 2005, 105, 1025–1102, DOI: https://dx.doi.org/10.1021/cr030063a.

F. Pincella, K. Isozaki, and K. Miki, A Visible Light-driven Plasmonic Photocatalyst, Light Sci. Appl., 2014, 3, e133, DOI: https://dx.doi.org/10.1038/lsa.2014.14.

V. Vaiano, G. Iervolino, D. Sannino, J. J. Murcia, M. C. Hidalgo, P. Ciambelli, and J. A. Navio, Photocatalytic Removal of Patent Blue V Dye on Au-TiO2 and Pt-TiO2 Catalysts, Appl. Catal. B Environ., 2016, 188, 134-146, DOI: https://dx.doi.org/10.1016/j.apcatb.2016.02.001.

X. Zhu, C. Jin, X.-S. Li, J.-L. Liu, Z.-G. Sun, C. Shi, X. Li, and A.-M. Zhu, Photocatalytic Formaldehyde Oxidation over Plasmonic Au/TiO2 under Visible Light: Moisture Indispensability and Light Enhancement, ACS Catal., 2017, 7, 6514–6524, DOI: https://dx.doi.org/10.1021/acscatal.7b01658.

A. Y. Tsivadze, G. V. Ionova, V. K. Mikhalko, I. S. Ionova, and G. A. Gerasimova, The Fine Structure of Plasmon Bands in Gold Nanoparticles, Prot. Met. Phys. Chem. Surf., 2013, 49, 166–168, DOI: https://dx.doi.org/10.1134/S2070205113020093.

A. Gołąbiewska, A. Malankowska, M. Jarek, W. Lisowski, G. Nowaczyk, S. Jurga, and A. Zaleska-Medynska, The Effect of Gold Shape and Size on the Properties and Visible Light-induced Photoactivity of Au-TiO2, Appl. Catal B Environ., 2016, 196, 27–40, DOI: https://dx.doi.org/10.1016/j.apcatb.2016.05.013.

A. Primo, A. Corma, and H. García, Titania Supported Gold Nanoparticles as Photocatalyst, Phys. Chem. Chem. Phys., 2011, 13, 886–910, DOI: https://dx.doi.org/10.1039/C0CP00917B.

C. D'Amato, R. Giovannetti, M. Zannotti, E. Rommozzi, S. Ferraro, C. Seghetti, M. Minicucci, R. Gunnella, and A. Di Cicco, Enhancement of Visible-light Photoactivity by Polypropylene Coated Plasmonic Au/TiO2 for Dye Degradation in Water Solution, Appl. Surf. Sci., 2018, 441, 575–587, DOI: https://dx.doi.org/10.1016/j.apsusc.2018.01.290.

S. K. Khore, S. R. Kadam, S. D. Naik, B. B. Kale, and R. S. Sonawane, Solar Light Active Plasmonic Au@TiO2 Nanocomposite with Superior Photocatalytic Performance for H2 Production and Pollutant Degradation, New J. Chem., 2018, 42, 10958–10968, DOI: https://dx.doi.org/10.1039/C8NJ01410H.

S. Y. Lee, D. Kang, S. Jeong, H. T. Do, and J. H. Kim, Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation, ACS Omega, 2020, 5, 4233–4241, DOI: https://dx.doi.org/10.1021/acsomega.9b04127.

G. K. Naik, P. M. Mishra, and K. Parida, Green Synthesis of Au/TiO2 for Effective Dye Degradation in Aqueous System, Chem. Eng. J., 2013, 229, 492–497, DOI: https://dx.doi.org/10.1016/j.cej.2013.06.053.

M. Tsuji, K. Matsuda, M. Tanaka, S. Kuboyama, K. Uto, N. Wada, et al. Enhanced Photocatalytic Degradation of Methyl Orange by Au/TiO2 Nanoparticles under Neutral and Acidic Solutions, ChemistrySelect, 2018, 3, 1432–1438, DOI: https://dx.doi.org/10.1002/slct.201702664.

J. Li, and W. Wang, A Study of Photodegradation of Sulforhodamine B on Au–TiO2/bentonite under UV and Visible Light Irradiation, Solid State Sci., 2009, 11, 2037–2043, DOI: https://dx.doi.org/10.1016/j.solidstatesciences.2009.09.012.

Y. Yu, W. Wen, X.-Y. Qian, J.-B. Liu, and J.-M. Wu, UV and Visible Light Photocatalytic Activity of Au/TiO2 Nanoforests with Anatase/Rutile Phase Junctions and Controlled Au Locations, Sci. Rep., 2017, 7, 1-13, DOI: https://dx.doi.org/10.1038/srep41253.

J. V. Hernández, S. Coste, A. G. Murillo, F. C. Romo, and A. Kassiba, Effects of Metal Doping (Cu, Ag, Eu) on the Electronic and Optical Behavior of Nanostructured TiO2, J. Alloys Compd., 2017, 710, 355–363, DOI: https://dx.doi.org/10.1016/j.jallcom.2017.03.275.

L. Barrientos, P. Allende, M. A. Laguna-Bercero, J. Pastrián, J. Rodriguez-Becerra, and L. Cáceres-Jensen, Controlled Ag-TiO2 Heterojunction Obtained by Combining Physical Vapor Deposition and Bifunctional Surface Modifiers, J. Phys. Chem. Solids, 2018, 119, 147–156, DOI: https://dx.doi.org/10.1016/j.jpcs.2018.03.046.

S. J. Varapragasam, S. Mia, C. Wieting, C. Balasanthiran, M. Y. Hossan, A. Baride, R. M. Rioux, J. D. Hoefelmeyer, Ag–TiO2 Hybrid Nanocrystal Photocatalyst: Hydrogen Evolution under UV Irradiation but Not under Visible-Light Irradiation, ACS Appl. Energy Mater., 2019, 2, 8274–8282, DOI: https://dx.doi.org/10.1021/acsaem.9b01730.

S. A. Anjugam Vandarkuzhali, N. Pugazhenthiran, R. Mangalaraja, P. Sathishkumar, B. Viswanathan, and S. Anandan, Ultrasmall Plasmonic Nanoparticles Decorated Hierarchical Mesoporous TiO2 as an Efficient Photocatalyst for Photocatalytic Degradation of Textile Dyes, ACS Omega, 2018, 3, 9834–9845, DOI: https://dx.doi.org/10.1021/acsomega.8b01322.

R.-J. Wu, Y.-S. Liu, H.-F. Lai, J.-H. Wang, and M. Chavali, Promotion Effect of Pd on TiO2 for Visible Light Photocatalytic Degradation of Gaseous Formaldehyde, J. Nanosci. Nanotechnol., 2014, 14, 6792–6799, DOI: https://dx.doi.org/10.1166/jnn.2014.8986.

T. Harifi, and M. Montazer, Fe3+:Ag/TiO2 Nanocomposite: Synthesis, Characterization and Photocatalytic Activity under UV and Visible Light Irradiation, Appl. Catal. A Gen., 2014, 473, 104–415, DOI: https://dx.doi.org/10.1016/j.apcata.2014.01.005.

R. A. Rather, S. Singh, and B. Pal, Photocatalytic Degradation of Methylene Blue by Plasmonic Metal-TiO2 Nanocatalysts under Visible Light Irradiation, J. Nanosci. Nanotechnol., 2017, 17, 1210–1216, DOI: https://dx.doi.org/10.1166/jnn.2017.12658.

W. Kallel, S. Chaabene, and S. Bouattour, Novel (Ag, Y) Doped TiO2 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity under Visible Light, Physicochem. Probl. Miner. Process., 2019, 55, 745–759, DOI: https://dx.doi.org/10.5277/ppmp19001.

S. Ko, Photochemical Synthesis, Characterization and Enhanced Visible Light-Induced Photocatalysis of Ag Modified TiO2 Nanocatalyst, J. Nanosci. Nanotechnol., 2014, 14, 6923-6928, DOI: https://dx.doi.org/10.1166/jnn.2014.8988.

M. M. Mahlambi, A. K. Mishra, S. B. Mishra, R. W. Krause, B. B. Mamba, and A. M. Raichur, Metal Doped Nanosized Titania Used for the Photocatalytic Degradation of Rhodamine B Dye under Visible-light, J. Nanosci. Nanotechnol., 2013, 13, 4934–4942, DOI: https://dx.doi.org/10.1166/jnn.2013.7587.

M. M. Mahlambi, A. K. Mishra, S. B. Mishra, A. M. Raichur, B. B. Mamba, and R. W. Krause, Layer-by-layer Self-assembled Metal-ion-(Ag-, Co-, Ni-, and Pd-) Doped TiO2 Nanoparticles: Synthesis, Characterisation, and Visible Light Degradation of Rhodamine B, J. Nanomater., 2012, 302046, DOI: https://dx.doi.org/10.1155/2012/302046.

P. Yuvasree, K. Nithya, N. Neelakandeswari, N. Rajasekaran, K. Uthayarani, M. Chitra, and S. Sathiesh Kumar, Phytochemical Preparation, Characterization and Photocatalytic Applications of Ag-TiO2 Nanocatalyst, Adv. Mater. Res., 2015, 1086, 1–6, DOI: https://dx.doi.org/10.4028/www.scientific.net/AMR.1086.1.

A. Bathla, R. A. Rather, T. Poonia, and B. Pal, Morphology Dependent Photocatalytic Activity of CuO/CuO–TiO2 Nanocatalyst for Degradation of Methyl Orange Under Sunlight, J. Nanosci. Nanotechnol., 2020, 20, 3123–3130, DOI: https://dx.doi.org/10.1166/jnn.2020.17397.

This review highlights recent progress on the application of such material plasmon-enhanced titania photocatalysts for photodegradation of organic dyes. The focus is placed on several mechanisms on how the surface plasmon resonance (SPR) phenomenon could enhance the photocatalytic activity of semiconductors. Furthermore, the performance of several types of plasmon-enhanced titania nanocatalyst with different kinds of metal plasmonic nanoparticles is also compared and comprehensively discussed including nanocatalysts' kinetics in facilitating the photocatalytic degradation of different types of organic dyes.
Published
2020-12-30
How to Cite
Khalil, M., Iqbal, R. M., Kadja, G. T., & Djuhana, D. (2020). Recent Advances on Plasmon-enhanced Titania Nanocatalysts for Photocatalytic Degradation of Organic Dyes. Journal of the Indonesian Chemical Society, 3(3), 117. https://doi.org/10.34311/jics.2020.03.3.117