Preliminary Study of the Potential of Phanerochaete chrysosporium Immobilized in Agar for Degradation of Sugarcane Bagasse

  • Rosita Yusnidar Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
  • Evi Susanti Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
  • Subandi Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
Keywords: PhanPerochaete chrysosporium, immobilized, degradation, sugarcane bagasse


Previous research has shown that the culture of Phanerochaete chrysosporium in stationary phase is able to degrade sugarcane bagasse to glucose in a single reaction step. The aims of this study is to study the ability of P. chrysosporium immobilized in agar with or without rejuvenation to degrade bagasse and to determine the optimum process conditions comprising method, amount of bagasse, temperature and incubation time. The immobilized P. chrysosporium without rejuvenation was incubated with bagasse directly, while the immobilized P. chrysosporium within rejuvenation first incubated in N-limited growth media for 48 hours and washed before being incubated with bagasse. Glucose as a parameter to determine the ability of degradation is determined by the Somogy-Nelson method. The yield of bagasse degradation by the immobilized P. chrysosporium without or with the rejuvenation was 1.78% and 1.07% respectively, with 2g bagasse, for 7 days incubated, at 37°C, and shaking rate of 50 rpm. The optimum condition of bagasse degradation was conducted by the immobilized stationary phase P. chrysosporium (0.065 g dry weight) in 3.3% agar without rejuvenation for as much as 4 g of bagasse, the incubation temperature of 37 ° C, for 7 days, giving degradation rate of 1.045%.


Download data is not yet available.


[1]. Anwar, S. (2008). Ampas Tebu. Laboratorium Bioindustri TIP-FTP. Universitas Brawijaya, Malang.
[2]. Bon, E.P.S. and Ferrara, M. A. (2007). Bioethanol Production via Enzymatic Hydrolysis of Cellulosic Biomass. FAO Seminar on The Role of Agricultural Biotechnologies for Production of Bioenergy in Developing Countries.
[3]. Forgaty, W. (Ed.). (1987). Microbial Enzymes and Biotechnology. Applied Science Publisher, London.
[4]. Kirk, T K. and Chang, H-M. (1981). Potential Applications of Bio-lignolytic System. Enzyme Microb. Technol., Vol 3, 189 – 196.
[5]. Koesnandar, Helianti, I. and Nurhayati, N. (2008). Recent Developments in the Bioconversion of Lignocelluloses into Ethanol. Microbiology Indonesia, Vol. 2 (3), 95-106.
[6]. Manavalan, A., Adav, S S., Sze, S K. (2011). iTraq-based Quantitative Secretome Analysis of Phanerochaete chrysosporium. Journal of Proteomic, 75, 642-654.
[7]. Martina, A., Yuli,N., and Sutisna, M. (2000). Pengaruh pH dan Waktu Inkubasi terhadap Laju Degradasi Lignin Kayu Albasia (Pharaserianthes falcataria (L.) Nielsen) dan Indulin secara Enzimatik oleh Jamur Phanerochaete crhysosporium. Prosiding Semirata Bidang MIPA BKS-PTN Barat. Pekanbaru. (Indonesian)
[8]. Sendelius, J. (2005). Steam Pretreatment Optimisation for Sugarcane Bagasse in Bioethanol Production. Thesis. Department of Chemical Enginering, Lund University, Sweden.
[9]. Susanti, E., Neena Z., Sumari and Izzati, N. (2010), Pengaruh Perlakuan Awal Penguapan dan Penguapan-Impregnasi Menggunakan H2SO4 dan Etanol Terhadap Hasil Hidrolisis Ampas Tebu Secara Enzimatis, Prosiding Seminar Nasional MIPA. Universitas Negeri Malang. (Indonesian)
[10]. Susanti, E., Yusnidar, R. and Subandi, (2011), Saccharification of Sugarcane Bagasse with Phanerochaete chrysosporium, The Humbolt Kolleg-International Conference on Natural Sciences.
[11]. Urek, R.O. and Pazarlioglu, N.K. (2003), Purification and Partial Characterization of Manganese Peroxidase from Immobilized Phanerochaete chrysosporium. Process Biochemistry, 39, 2061-2068.
[12]. Zacchi, L., Burla, G., Zuolong, D. and Harvey P.J. (2000), Metabolism of Cellulose by Phanerochaete chrysosporium in Continously Agitated Culture is Associated with Enhanced Production of Lignin Peroxidase. Journal of Biotechnology, 78, 185-192.